R/separate_genes.R

Defines functions separate_genes

Documented in separate_genes

#' Separate genes and operons into multiple rows
#'
#' Separate genes and operons mentioned in full text into multiple rows
#'
#' @param txt a table
#' @param pattern regular expression to match genes, default is to match
#' microbial genes like AbcD, default [A-Za-z][a-z]{2}[A-Z0-9]+
#' @param genes an optional vector of genes, set pattern to NA to only match
#' this list.
#' @param operon operon length, default 6. Split genes with 6 or more letters
#' into separate genes, for example AbcDEF is split into abcD, abcE and abcF.
#' @param column column name to search, default "text"
#'
#' @note Check for genes in italics using \code{xml_text(xml_find_all(doc,
#' "//sec//p//italic"))} and update the pattern or add additional genes as an
#' optional vector if needed
#'
#' @return a tibble with gene name, matching text and rows.
#'
#' @author Chris Stubben
#'
#' @examples
#' x <- data.frame(row = 1, text = "Genes like YacK, hmu and sufABC")
#' separate_genes(x)
#' separate_genes(x, genes = "hmu")
#' @export

separate_genes <- function(txt, pattern = "\\b[A-Za-z][a-z]{2}[A-Z0-9]+\\b",
                           genes, operon = 6, column = "text") {
  if (!operon > 4) stop("Operon length should be 5 or more")
  if (!missing(genes)) {
    x1 <- paste0("\\b", paste(genes, collapse = "\\b|\\b"), "\\b")
    if (pattern %in% c("", NA)) {
      pattern <- x1
    } else {
      pattern <- paste(pattern, x1, sep = "|")
    }
  }
  x <- separate_text(txt, pattern, column)
  if (is.null(x)) {
    x1 <- NULL
  } else {
    ## add option to exclue common matches
    x <- dplyr::filter(x, !match %in% c(
      "TraDIS", "taqDNA", "log2", "log10",
      "ecoRI", "bamHI", "chr1", "chr2"
    ))
    if (nrow(x) == 0) stop("No match to genes")
    ## don't split locus tags like ypo2995
    y <- ifelse(nchar(x$match) >= operon & !grepl(
      "^[0-9]+$",
      substring(x$match, 4)
    ),
    mapply(
      paste0, tolower(substr(x$match, 1, 3)),
      strsplit(substring(x$match, 4), "")
    ),
    paste0(tolower(substr(x$match, 1, 1)), substring(x$match, 2))
    )
    n <- vapply(y, length, integer(1))
    x1 <- dplyr::bind_cols(gene = unlist(y), x[ rep(seq_len(nrow(x)), n), ])
  }
  x1
}

Try the tidypmc package in your browser

Any scripts or data that you put into this service are public.

tidypmc documentation built on Aug. 1, 2019, 5:05 p.m.