if (requireNamespace("glmnet", quietly = TRUE)) { library(tidypredict) library(glmnet) library(dplyr) eval_code <- TRUE } else { eval_code <- FALSE } knitr::opts_chunk$set( collapse = TRUE, comment = "#>", eval = eval_code )
| Function |Works|
|---------------------------------------------------------------|-----|
|tidypredict_fit(), tidypredict_sql(), parse_model() | ✔ |
|tidypredict_to_column() | ✔ |
|tidypredict_test() | ✔ |
|tidypredict_interval(), tidypredict_sql_interval() | ✗ |
|parsnip | ✔ |
tidypredict_ functionslibrary(glmnet) model <- glmnet::glmnet(mtcars[, -1], mtcars$mpg, lambda = 1)
Create the R formula
r
tidypredict_fit(model)
Add the prediction to the original table ```r library(dplyr)
mtcars %>% tidypredict_to_column(model) %>% glimpse() ```
tidypredict results match to the model's predict() results.
r
tidypredict_test(model, mtcars[, -1])parsnip fitted models are also supported by tidypredict:
library(parsnip) p_model <- linear_reg(penalty = 1) %>% set_engine("glmnet") %>% fit(mpg ~ ., data = mtcars)
tidypredict_fit(p_model)
Here is an example of the model spec:
pm <- parse_model(model) str(pm, 2)
str(pm$trees[1])
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.