Nothing
#' @title Adabelief optimizer
#'
#' @name optim_adabelief
#'
#' @author Gilberto Camara, \email{gilberto.camara@@inpe.br}
#' @author Rolf Simoes, \email{rolf.simoes@@inpe.br}
#' @author Felipe Souza, \email{lipecaso@@gmail.com}
#' @author Alber Sanchez, \email{alber.ipia@@inpe.br}
#'
#' @description
#' R implementation of the adabelief optimizer proposed
#' by Zhuang et al (2020). We used the pytorch implementation
#' developed by the authors which is available at
#' https://github.com/jettify/pytorch-optimizer.
#' Thanks to Nikolay Novik of his work on python optimizers.
#'
#' The original implementation is licensed using the Apache-2.0 software license.
#' This implementation is also licensed using Apache-2.0 license.
#'
#' From the abstract by the paper by Zhuang et al (2021):
#' We propose Adabelief to simultaneously achieve three goals:
#' fast convergence as in adaptive methods, good generalization as in SGD,
#' and training stability. The intuition for AdaBelief is to adapt
#' the stepsize according to the "belief" in the current gradient direction.
#' Viewing the exponential moving average of the noisy gradient
#' as the prediction of the gradient at the next time step,
#' if the observed gradient greatly deviates from the prediction,
#' we distrust the current observation and take a small step;
#' if the observed gradient is close to the prediction,
#' we trust it and take a large step.
#' @references
#' Juntang Zhuang, Tommy Tang, Yifan Ding, Sekhar Tatikonda,
#' Nicha Dvornek, Xenophon Papademetris, James S. Duncan.
#' "Adabelief Optimizer: Adapting Stepsizes by the Belief in Observed Gradients",
#' 34th Conference on Neural Information Processing Systems (NeurIPS 2020),
#' Vancouver, Canada.
#' https://arxiv.org/abs/2010.07468
#'
#' @param params List of parameters to optimize.
#' @param lr Learning rate (default: 1e-3)
#' @param betas Coefficients for computing running averages
#' of gradient and its square (default: (0.9, 0.999))
#' @param eps Term added to the denominator to improve numerical
#' stability (default: 1e-16)
#' @param weight_decay Weight decay (L2 penalty) (default: 0)
#' @param weight_decouple Use decoupled weight decay as is done in AdamW?
#' @param fixed_decay This is used when weight_decouple is set as True.
#' When fixed_decay == True, weight decay is
#' W_new = W_old - W_old * decay.
#' When fixed_decay == False, the weight decay is
#' W_new = W_old - W_old * decay * learning_rate.
#' In this case, weight decay decreases with learning rate.
#' @param rectify Perform the rectified update similar to RAdam?
#'
#' @returns
#' A torch optimizer object implementing the `step` method.
#'
#' @examples
#' if (torch::torch_is_installed()) {
#' # function to demonstrate optimization
#' beale <- function(x, y) {
#' log((1.5 - x + x * y)^2 + (2.25 - x - x * y^2)^2 + (2.625 - x + x * y^3)^2)
#' }
#' # define optimizer
#' optim <- torchopt::optim_adabelief
#' # define hyperparams
#' opt_hparams <- list(lr = 0.01)
#'
#' # starting point
#' x0 <- 3
#' y0 <- 3
#' # create tensor
#' x <- torch::torch_tensor(x0, requires_grad = TRUE)
#' y <- torch::torch_tensor(y0, requires_grad = TRUE)
#' # instantiate optimizer
#' optim <- do.call(optim, c(list(params = list(x, y)), opt_hparams))
#' # run optimizer
#' steps <- 400
#' x_steps <- numeric(steps)
#' y_steps <- numeric(steps)
#' for (i in seq_len(steps)) {
#' x_steps[i] <- as.numeric(x)
#' y_steps[i] <- as.numeric(y)
#' optim$zero_grad()
#' z <- beale(x, y)
#' z$backward()
#' optim$step()
#' }
#' print(paste0("starting value = ", beale(x0, y0)))
#' print(paste0("final value = ", beale(x_steps[steps], y_steps[steps])))
#' }
#' @export
optim_adabelief <- torch::optimizer(
"optim_adabelief",
initialize = function(params,
lr = 0.001,
betas = c(0.9, 0.999),
eps = 1.0e-08,
weight_decay = 1.0e-06,
weight_decouple = TRUE,
fixed_decay = FALSE,
rectify = TRUE) {
if (lr <= 0.0)
stop("Learning rate must be positive.", call. = FALSE)
if (eps < 0.0)
stop("eps must be non-negative.", call. = FALSE)
if (betas[1] > 1.0 | betas[1] <= 0.0)
stop("Invalid beta parameter.", call. = FALSE)
if (betas[2] > 1.0 | betas[1] <= 0.0)
stop("Invalid beta parameter.", call. = FALSE)
if (weight_decay < 0)
stop("Invalid weight_decay value.", call. = FALSE)
defaults = list(
lr = lr,
betas = betas,
eps = eps,
weight_decay = weight_decay
)
super$initialize(params, defaults)
self$weight_decouple <- weight_decouple
self$rectify <- rectify
self$fixed_decay <- fixed_decay
},
step = function(closure = NULL){
loop_fun <- function(group, param, g, p) {
if (is.null(param$grad))
next
grad <- param$grad
# Variable initialization
beta1 <- group[['betas']][[1]]
beta2 <- group[['betas']][[2]]
weight_decay <- group[['weight_decay']]
eps <- group[["eps"]]
lr <- group[['lr']]
# State initialization
if (length(state(param)) == 0) {
state(param) <- list()
state(param)[["rho_inf"]] <- 2.0 / (1.0 - beta2) - 1.0
state(param)[["step"]] <- 0
# Exponential moving average of gradient values
state(param)[["exp_avg"]] <- torch::torch_zeros_like(param)
# Exponential moving average of squared gradient values
state(param)[["exp_avg_var"]] <- torch::torch_zeros_like(param)
}
# Define variables for optimization function
exp_avg <- state(param)[["exp_avg"]]
exp_avg_var <- state(param)[["exp_avg_var"]]
# take one step
state(param)[["step"]] <- state(param)[["step"]] + 1
# bias correction
bias_correction1 <- 1 - beta1^state(param)[['step']]
bias_correction2 <- 1 - beta2^state(param)[['step']]
# perform weight decay, check if decoupled weight decay
if (self$weight_decouple) {
if (!self$fixed_decay)
param$mul_(1.0 - lr * weight_decay)
else
param$mul_(1.0 - weight_decay)
} else {
if (weight_decay != 0)
grad$add_(param, alpha = weight_decay)
}
# update the first moment
exp_avg$mul_(beta1)$add_(grad, alpha = 1 - beta1)
grad_residual <- grad - exp_avg
# Decay the second moment
exp_avg_var$mul_(beta2)$addcmul_(grad_residual,
grad_residual,
value = (1 - beta2))
# calculate denominator
denom <- (exp_avg_var$add_(eps)$sqrt()/sqrt(bias_correction2))$add_(eps)
if (!self$rectify) {
# calculate step size
step_size <- lr / bias_correction1
param$addcdiv_(exp_avg, denom, value = -step_size)
} else {
# calculate rho_t
rho_inf <- state(param)[["rho_inf"]]
step <- state(param)[["step"]]
state(param)[["rho_t"]] <- rho_inf -
(2 * step * beta2 ^ step) /
(1.0 - beta2 ^ step)
rho_t <- state(param)[["rho_t"]]
# more conservative since it's an approximated value
if (rho_t > 4) {
# perform Adam style update if variance is small
rt = (
(rho_t - 4.0) * (rho_t - 2.0) * rho_inf
/ (rho_inf - 4.0)
/ (rho_inf - 2.0)
/ rho_t
)
rt = sqrt(rt)
step_size <- rt * lr / bias_correction1
param$addcdiv_(exp_avg,
denom,
value = -step_size
)
} else
# perform SGD style update
param$add_(exp_avg, alpha = -lr)
}
}
private$step_helper(closure, loop_fun)
}
)
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.