Nothing
#' @title AdamW optimizer
#'
#' @name optim_adamw
#'
#' @author Gilberto Camara, \email{gilberto.camara@@inpe.br}
#' @author Rolf Simoes, \email{rolf.simoes@@inpe.br}
#' @author Felipe Souza, \email{lipecaso@@gmail.com}
#' @author Alber Sanchez, \email{alber.ipia@@inpe.br}
#'
#' @description
#' R implementation of the AdamW optimizer proposed
#' by Loshchilov & Hutter (2019). We used the pytorch implementation
#' developed by Collin Donahue-Oponski available at:
#' https://gist.github.com/colllin/0b146b154c4351f9a40f741a28bff1e3
#'
#' From the abstract by the paper by Loshchilov & Hutter (2019):
#' L2 regularization and weight decay regularization are equivalent for standard
#' stochastic gradient descent (when rescaled by the learning rate),
#' but as we demonstrate this is not the case for adaptive gradient algorithms,
#' such as Adam. While common implementations of these algorithms
#' employ L2 regularization (often calling it “weight decay”
#' in what may be misleading due to the inequivalence we expose),
#' we propose a simple modification to recover the original formulation of
#' weight decay regularization by decoupling the weight decay from the optimization
#' steps taken w.r.t. the loss function
#'
#' @references
#' Ilya Loshchilov, Frank Hutter,
#' "Decoupled Weight Decay Regularization",
#' International Conference on Learning Representations (ICLR) 2019.
#' https://arxiv.org/abs/1711.05101
#'
#' @param params List of parameters to optimize.
#' @param lr Learning rate (default: 1e-3)
#' @param betas Coefficients computing running averages of gradient
#' and its square (default: (0.9, 0.999))
#' @param eps Term added to the denominator to improve numerical
#' stability (default: 1e-8)
#' @param weight_decay Weight decay (L2 penalty) (default: 1e-6)
#'
#' @returns
#' A torch optimizer object implementing the `step` method.
#' @examples
#' if (torch::torch_is_installed()) {
#' # function to demonstrate optimization
#' beale <- function(x, y) {
#' log((1.5 - x + x * y)^2 + (2.25 - x - x * y^2)^2 + (2.625 - x + x * y^3)^2)
#' }
#' # define optimizer
#' optim <- torchopt::optim_adamw
#' # define hyperparams
#' opt_hparams <- list(lr = 0.01)
#'
#' # starting point
#' x0 <- 3
#' y0 <- 3
#' # create tensor
#' x <- torch::torch_tensor(x0, requires_grad = TRUE)
#' y <- torch::torch_tensor(y0, requires_grad = TRUE)
#' # instantiate optimizer
#' optim <- do.call(optim, c(list(params = list(x, y)), opt_hparams))
#' # run optimizer
#' steps <- 400
#' x_steps <- numeric(steps)
#' y_steps <- numeric(steps)
#' for (i in seq_len(steps)) {
#' x_steps[i] <- as.numeric(x)
#' y_steps[i] <- as.numeric(y)
#' optim$zero_grad()
#' z <- beale(x, y)
#' z$backward()
#' optim$step()
#' }
#' print(paste0("starting value = ", beale(x0, y0)))
#' print(paste0("final value = ", beale(x_steps[steps], y_steps[steps])))
#' }
#' @export
optim_adamw <- torch::optimizer(
"optim_adamw",
initialize = function(params,
lr = 0.01,
betas = c(0.9, 0.999),
eps = 1e-8,
weight_decay = 1e-6) {
if (lr <= 0.0)
stop("Learning rate must be positive.", call. = FALSE)
if (eps < 0.0)
stop("eps must be non-negative.", call. = FALSE)
if (betas[1] > 1.0 | betas[1] <= 0.0)
stop("Invalid beta parameter.", call. = FALSE)
if (betas[2] > 1.0 | betas[1] <= 0.0)
stop("Invalid beta parameter.", call. = FALSE)
if (weight_decay < 0)
stop("Invalid weight_decay value.", call. = FALSE)
defaults = list(
lr = lr,
betas = betas,
eps = eps,
weight_decay = weight_decay
)
super$initialize(params, defaults)
},
step = function(closure = NULL){
loop_fun <- function(group, param, g, p) {
if (is.null(param$grad))
next
grad <- param$grad
# State initialization
if (length(state(param)) == 0) {
state(param) <- list()
state(param)[["step"]] <- 0
# Exponential moving average of gradient values
state(param)[["exp_avg"]] <- torch::torch_zeros_like(param)
# Exponential moving average of squared gradient values
state(param)[["exp_avg_sq"]] <- torch::torch_zeros_like(param)
}
# Define variables for optimization function
exp_avg <- state(param)[["exp_avg"]]
exp_avg_sq <- state(param)[["exp_avg_sq"]]
beta1 <- group[['betas']][[1]]
beta2 <- group[['betas']][[2]]
weight_decay <- group[['weight_decay']]
eps <- group[["eps"]]
lr <- group[['lr']]
# take one step
state(param)[["step"]] <- state(param)[["step"]] + 1
# Decay the first moment
exp_avg$mul_(beta1)$add_(grad, alpha = 1 - beta1)
# Decay the second moment
exp_avg_sq$mul_(beta2)$addcmul_(grad, grad, value = (1 - beta2))
# calculate denominator
denom = exp_avg_sq$sqrt()$add_(eps)
# bias correction
bias_correction1 <- 1 - beta1^state(param)[['step']]
bias_correction2 <- 1 - beta2^state(param)[['step']]
# calculate step size
step_size <- lr * sqrt(bias_correction2) / bias_correction1
# L2 correction (different from adam)
if (weight_decay != 0)
param$add_(param, -weight_decay * lr)
# go to next step
param$addcdiv_(exp_avg, denom, value = -step_size)
}
private$step_helper(closure, loop_fun)
}
)
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.