Nothing
#' @title QHAdam optimization algorithm
#'
#' @name optim_qhadam
#'
#' @author Gilberto Camara, \email{gilberto.camara@@inpe.br}
#' @author Daniel Falbel, \email{daniel.falble@@gmail.com}
#' @author Rolf Simoes, \email{rolf.simoes@@inpe.br}
#' @author Felipe Souza, \email{lipecaso@@gmail.com}
#' @author Alber Sanchez, \email{alber.ipia@@inpe.br}
#'
#' @description
#' R implementation of the QHAdam optimizer proposed
#' by Ma and Yarats(2019). We used the implementation available at
#' https://github.com/jettify/pytorch-optimizer/blob/master/torch_optimizer/qhadam.py.
#' Thanks to Nikolay Novik for providing the pytorch code.
#'
#' The original implementation has been developed by Facebook AI
#' and is licensed using the MIT license.
#'
#' From the the paper by Ma and Yarats(2019):
#' QHAdam is a QH augmented version of Adam, where we
#' replace both of Adam's moment estimators with quasi-hyperbolic terms.
#' QHAdam decouples the momentum term from the current gradient when
#' updating the weights, and decouples the mean squared gradients
#' term from the current squared gradient when updating the weights.
#'
#'
#' @references
#' Jerry Ma, Denis Yarats,
#' "Quasi-hyperbolic momentum and Adam for deep learning".
#' https://arxiv.org/abs/1810.06801
#'
#' @param params List of parameters to optimize.
#' @param lr Learning rate (default: 1e-3)
#' @param betas Coefficients computing running averages of gradient
#' and its square (default: (0.9, 0.999))
#' @param nus Immediate discount factors used to
#' estimate the gradient and its square
#' (default: (1.0, 1.0))
#' @param eps Term added to the denominator to improve numerical
#' stability (default: 1e-8)
#' @param weight_decay Weight decay (L2 penalty) (default: 0)
#' @param decouple_weight_decay Whether to decouple the weight
#' decay from the gradient-based optimization step.
#'
#' @returns
#' A torch optimizer object implementing the `step` method.
#' @examples
#' if (torch::torch_is_installed()) {
#' # function to demonstrate optimization
#' beale <- function(x, y) {
#' log((1.5 - x + x * y)^2 + (2.25 - x - x * y^2)^2 + (2.625 - x + x * y^3)^2)
#' }
#' # define optimizer
#' optim <- torchopt::optim_qhadam
#' # define hyperparams
#' opt_hparams <- list(lr = 0.01)
#'
#' # starting point
#' x0 <- 3
#' y0 <- 3
#' # create tensor
#' x <- torch::torch_tensor(x0, requires_grad = TRUE)
#' y <- torch::torch_tensor(y0, requires_grad = TRUE)
#' # instantiate optimizer
#' optim <- do.call(optim, c(list(params = list(x, y)), opt_hparams))
#' # run optimizer
#' steps <- 400
#' x_steps <- numeric(steps)
#' y_steps <- numeric(steps)
#' for (i in seq_len(steps)) {
#' x_steps[i] <- as.numeric(x)
#' y_steps[i] <- as.numeric(y)
#' optim$zero_grad()
#' z <- beale(x, y)
#' z$backward()
#' optim$step()
#' }
#' print(paste0("starting value = ", beale(x0, y0)))
#' print(paste0("final value = ", beale(x_steps[steps], y_steps[steps])))
#' }
#'
#' @export
optim_qhadam <- torch::optimizer(
"optim_qhadam",
initialize = function(params,
lr = 0.01,
betas = c(0.9, 0.999),
eps = 0.001,
nus = c(1.0, 1.0),
weight_decay = 0,
decouple_weight_decay = FALSE) {
if (lr <= 0.0)
stop("Learning rate must be positive.", call. = FALSE)
if (eps < 0.0)
stop("eps must be non-negative.", call. = FALSE)
if (betas[1] > 1.0 | betas[1] <= 0.0)
stop("Invalid beta parameter.", call. = FALSE)
if (betas[2] > 1.0 | betas[1] <= 0.0)
stop("Invalid beta parameter.", call. = FALSE)
if (weight_decay < 0)
stop("Invalid weight_decay value.", call. = FALSE)
defaults = list(
lr = lr,
betas = betas,
eps = eps,
nus = nus,
weight_decay = weight_decay,
decouple_weight_decay = decouple_weight_decay
)
super$initialize(params, defaults)
},
step = function(closure = NULL) {
loop_fun <- function(group, param, g, p) {
if (is.null(param$grad))
next
# define parameters
beta1 <- group[['betas']][[1]]
beta2 <- group[['betas']][[2]]
nu1 <- group[['nus']][[1]]
nu2 <- group[['nus']][[2]]
weight_decay <- group[['weight_decay']]
decouple_weight_decay <- group[["decouple_weight_decay"]]
eps <- group[["eps"]]
lr <- group[['lr']]
d_p <- param$grad
if (weight_decay != 0) {
if (decouple_weight_decay)
param$mul_(1 - lr * weight_decay)
else
d_p$add_(weight_decay, param)
}
d_p_sq = d_p$mul(d_p)
# State initialization
# State initialization
if (length(state(param)) == 0) {
state(param) <- list()
state(param)[["beta1_weight"]] <- 0.0
state(param)[["beta2_weight"]] <- 0.0
# Exponential moving average of gradient values
state(param)[["exp_avg"]] <- torch::torch_zeros_like(param)
# Exponential moving average of squared gradient values
state(param)[["exp_avg_sq"]] <- torch::torch_zeros_like(param)
}
# Define variables for optimization function
state(param)[["beta1_weight"]] <- 1.0 + beta1 * state(param)[["beta1_weight"]]
state(param)[["beta2_weight"]] <- 1.0 + beta2 * state(param)[["beta2_weight"]]
beta1_weight <- state(param)[["beta1_weight"]]
beta2_weight <- state(param)[["beta2_weight"]]
exp_avg <- state(param)[["exp_avg"]]
exp_avg_sq <- state(param)[["exp_avg_sq"]]
beta1_adj <- 1.0 - (1.0 / beta1_weight)
beta2_adj <- 1.0 - (1.0 / beta2_weight)
exp_avg$mul_(beta1_adj)$add_(d_p, alpha = 1.0 - beta1_adj)
exp_avg_sq$mul_(beta2_adj)$add_(d_p_sq, alpha = 1.0 - beta2_adj)
avg_grad <- exp_avg$mul(nu1)
if (nu1 != 1.0)
avg_grad$add_(d_p, alpha = 1.0 - nu1)
avg_grad_rms = exp_avg_sq$mul(nu2)
if (nu2 != 1.0)
avg_grad_rms$add_(d_p_sq, alpha = 1.0 - nu2)
avg_grad_rms$sqrt_()
if (eps != 0.0)
avg_grad_rms$add_(eps)
param$addcdiv_(avg_grad, avg_grad_rms, value = -lr)
}
private$step_helper(closure, loop_fun)
}
)
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.