
upclass: An R Package for Updating Model-Based

Classification Rules

Niamh Russell
University College Dublin

Laura Cribbin
University of Limerick

Thomas Brendan Murphy
University College Dublin

Abstract

Standard methods for classification use labeled data to establish criteria for assigning
unlabeled data to groups. However, the unlabeled data which need to be classified of-
ten contain important information about the structure of the groups, despite the group
membership of these observations being unknown. A new R package called upclass is
presented which uses both labeled and unlabeled data to construct a model-based clas-
sification method. The method uses the EM algorithm to obtain maximum likelihood
estimates of the model parameters and classifications for the unlabeled data. It can be
shown to perform better than classical methods, particularly in cases where few observa-
tions are labeled.

Keywords: classification, EM algorithm, mclust, R, semi-supervised classification.

1. Introduction

Classification techniques are employed regularly in a wide variety of application areas. Ex-
amples include food science applications where studies are carried out to establish whether
products are correctly labeled (e.g., Caetano, Üstün, Hennessy, Smeyers-Verbeke, Melssen,
Downey, Buydens, and Vander Heyden 2007; Toher, Downey, and Murphy 2007, 2011); botan-
ical investigations to identify rare plants (e.g., Pouteau, Meyer, Taputuarai, and Stoll 2012)
and medical diagnostic applications to identify whether patients have a particular disease or
condition (e.g., Fan, Murphy, Byrne, Brennan, Fitzpatrick, and Watson 2011). It is important
to devise effective rules in order to reduce potential errors.

Classification methods require a labeled dataset so that the number of groups and the struc-
ture of groups can be inferred. The task is to classify any unlabeled observations into the
correct groups. Traditionally, a classification rule is developed using the fully labeled data
which can then be used to classify any new unlabeled data as it becomes available. Extensive
reviews of classification methods include Ripley (1996) and McLachlan (1992).

Semi-supervised classification methods use both the labeled and unlabeled data to develop
a classifier for the unlabeled observations. These methods exploit the idea that even though
the group memberships of the unlabeled data are unknown, these data carry important in-
formation about the group parameters (e.g., McLachlan 1977; O’Neill 1978; Dean, Murphy,
and Downey 2006; Chapelle, Schölkopf, and Zien 2006). These methods provide a framework
for updating a classification rule using unlabeled observations, so that more accurate clas-
sifications can be obtained. A number of semi-supervised classification methods have been

2 upclass: Classification Using Updated Classification Rules in R

developed including model-based methods (e.g., Dean et al. 2006; McNicholas 2010; Murphy,
Dean, and Raftery 2010; Toher et al. 2011) and machine learning methods (e.g., Joachims
1999; Wang, Chen, and Zhou 2012). Detailed reviews of semi-supervised classification include
Chapelle et al. (2006) and Zhu and Goldberg (2009).

Herein, we present the R package upclass which implements the (semi-supervised) updated
model-based classification method as developed in Dean et al. (2006). This method starts by
estimating the unknown labels using a standard model-based classification method and then
combines them with the labeled observations to form the complete-data. The EM algorithm
is utilized where the parameters and estimated unknown labels are iteratively updated until
convergence. This yields maximum likelihood estimates for the parameters in the model and
estimates group membership for the unlabeled observations.

The methods for standard model-based classification and clustering are outlined in Section 2
and the algorithm for the updated method is described in more detail in Section 3.

In Section 4, we present a short review of other semi-supervised methods, and outline what
our package adds to the existing functionality.

In Section 5, we will illustrate the use of each function in the upclass package by working
through examples using the well known olive oil data set (Forina, Armanino, Lanteri, and
Tiscornia 1983) . In Section 5.10, we give a short comparison of the effectiveness of the
updated method versus a fully supervised method for a case where only a small proportion
of the data is labeled.

The R package implementing the methodology described in this article is available from the
Comprehensive R Archive Network at http://CRAN.R-project.org/package=upclass.

2. Model-based methods

Discriminant analysis is concerned with classifying data into predefined groups while cluster-
ing sets out to cluster data into a previously undefined number of groups or clusters. In this
section, we will outline the model-based approach to clustering (Section 2.1) and discrimi-
nant analysis (Section 2.2). The updated classification method which will be developed in
Section 3 uses a hybrid of the statistical ideas underlying model-based discriminant analysis
and clustering.

2.1. Model-based clustering

Model-based clustering (Banfield and Raftery 1993; Fraley and Raftery 2002, 2007) as im-
plemented in the mclust package (Fraley, Raftery, Murphy, and Scrucca 2012) is used for
clustering data into groups, where the number of groups G is unknown.

Model-based clustering is formulated as follows, we assume that there are G clusters, where
each cluster g arises with probability τg (where

∑
τg = 1 and each τg is non-negative) and data

within each cluster follows a normal distribution with cluster specific mean µg and covariance
Σg. That is, the data are characterized by a finite mixture of normal distributions.

Hence, the density of each observation can be given by,

f(y) =
G∑

g=1

τgφ(y|µg,Σg), (1)

http://CRAN.R-project.org/package=upclass

Niamh Russell, Laura Cribbin, Thomas Brendan Murphy 3

where φ(·) is a multivariate normal density.

It is worth noting that the assumption of multivariate normal distributed clusters implies that
the clusters are elliptical in shape. Banfield and Raftery (1993) proposed that constraints be
placed on the covariance matrices in such a way as to allow for different conformations for
the elliptical clusters. A modified eigenvalue decomposition of Σg is used to implement these
variations. This decomposition can be written as

Σg = λgDgAgD
T
g ,

where λg − is a constant which controls the cluster volume

Dg − is an orthogonal matrix of eigenvectors which control the

orientation/direction of the clusters

Ag − is a diagonal matrix, with entries proportional to the

eigenvalues, which control the shape of the cluster.

We can restrict each part of the covariance Σg in different ways, resulting in fourteen different
possible models (Biernacki, Celeux, Govaert, and Langrognet 2006). Throughout this paper,
we will consider the ten covariance structures implemented in mclust (Fraley et al. 2012),
as displayed in Figure 1 and Table 1. Each letter in the name of a model corresponds to
the constraint placed on the volume, shape and orientation respectively. The constraint can
be equal (E), variable (V) or identity (I). Consider, for example, the EEV model for the
covariance. If data are fitted by this model, then each cluster has the same volume and the
same shape but the orientation of each cluster is allowed to differ.

EII VII EEI VEI EVI

VVI EEE EEV VEV VVV

Figure 1: Examples of clusters under each covariance restriction.

As shown in Figure 1, the various covariance restrictions result in a different combination
of cluster shapes in each model. The constraints yield parsimonious models which facili-
tate a more flexible modeling strategy beyond assuming unequal covariance (VVV) or equal
covariance (EEE).

We will introduce some notation here, which will be used throughout. Let (xN , lN) be the
labeled data, where the observations are denoted by xN = (x1, x2, . . . , xN) and their la-
bels by lN = (l1, l2, . . . , lN). The unlabeled data will be represented by yM where yM =

4 upclass: Classification Using Updated Classification Rules in R

Model Volume Shape Orientation Covariance Σg

EII Equal Spherical λI
VII Variable Spherical λgI
EEI Equal Equal Axis aligned λA
VEI Variable Equal Axis aligned λgA
EVI Equal Variable Axis aligned λAg

VVI Variable Variable Axis aligned λgAg

EEE Equal Equal Equal λDAD>

EEV Equal Equal Variable λDgAD>g
VEV Variable Equal Variable λgDgAD>g
VVV Variable Variable Variable λgDgAgD

>
g

Table 1: Covariance decompositions available.

(y1, y2, . . . , yM) and the unknown labels are zM = (z1, z2, . . . , zM).
The model parameters are estimated using maximum likelihood via the EM algorithm (Demp-
ster, Laird, and Rubin 1977). The EM algorithm, a technique used to find maximum likelihood
estimates in cases where there are missing data, is made up of two steps, the Expectation (E)
and the Maximization (M) steps. Since the data are from a mixture model, (See Equation 1)

we can write the likelihood as the product over this density, evaluated at each ym,

L(τ, µ,Σ|yM) =
M∏

m=1

 G∑
g=1

τgφ(ym|µg,Σg)

 , (2)

and the log-likelihood as

l(τ, µ,Σ|yM) =

M∑
m=1

log

 G∑
g=1

τgφ(ym|µg,Σg)

 ,
where τ = (τ1, τ2, . . . , τG), µ = (µ1, µ2, . . . , µG) and Σ = (Σ1,Σ2, . . . ,ΣG).

It is difficult to maximize the log-likelihood directly because the log-likelihood is expressed as
the log of a summation. To resolve this, we introduce indicator variables, zmg, which represent
the unknown labels of each observation,

where zmg =

{
1 if ym is from group g
0 otherwise.

The complete-data likelihood can now be written as

L(τ, µ,Σ|yM , zM) =
M∏

m=1

G∏
g=1

[τgφ(ym|µg,Σg)]zmg , (3)

and the complete-data log-likelihood is of the form

l(τ, µ,Σ|yM , zM) =
M∑

m=1

G∑
g=1

zmg [log τg + log φ(ym|µg,Σg)] . (4)

Niamh Russell, Laura Cribbin, Thomas Brendan Murphy 5

The E-step of the algorithm replaces the zmg values in Equation 4 with their conditional
expected values, which are of the form

ẑmg =
τ̂gφ(ym|µ̂g, Σ̂g)∑G

g′=1 τ̂g′φ(ym|µ̂g′ , Σ̂g′)
, for all m = 1, ...,M, and g = 1, ..., G. (5)

thus yielding the expected complete-data log-likelihood.

The M-step of the algorithm maximizes the expected complete-data log-likelihood function.
The algorithm is iterated until convergence of the log-likelihood is reached and the final zmg

values provide the posterior probability that observation m belongs to group g.

Each observation is then classified to the group with maximum a posteriori (MAP) probability.

Further details on the EM algorithm are provided in Section 3, where the version of the
algorithm for the updated method of model-based classification is described.

2.2. Model-based discriminant analysis

Two classical supervised classification methods are linear (LDA) and quadratic (QDA) dis-
criminant analysis. Both methods can be seen as model-based discriminant analysis methods
based on a similar model to that outlined in Section 2.1 but where the group membership
for each observation is known. When implementing LDA, the covariance matrix is assumed
equal for each group, which corresponds to the EEE covariance structure; whereas in QDA,
each group is allowed to have its own unconstrained covariance matrix, which corresponds to
the VVV covariance structure. It’s possible, of course, to carry out supervised classification
with all the Mclust models, as we will show in Sections 5.7 and 5.10.

In the context of supervised classification, there are two types of data: labeled data for which
the group memberships are known and unlabeled data where they are unknown. Supervised
classification uses labeled data to estimate model parameters which are used to create a
classification rule. This rule can then be used to classify the unlabeled data.

Keeping the notation of Section 2.1, the likelihood of the labeled data can be written as:

L(τ, µ,Σ|xN , lN) =

N∏
n=1

G∏
g=1

[τgφ(xn|µg,Σg)]lng . (6)

Hence, the log-likelihood is

l(τ, µ,Σ|xN , lN) =

N∑
n=1

G∑
g=1

lng[log τg + log φ(xn|µg,Σg)].

where lng =

{
1 if xn belongs to group g
0 otherwise.

The function l(τ, µ,Σ|xN , lN) can be maximized with respect to (τg, µg,Σg) to obtain maxi-

mum likelihood estimates for the parameters (τ̂g, µ̂g, Σ̂g) in the model. Using these estimates,
calculated from the labeled data, the expected value of the unknown labels zM can be com-
puted. They will have the same form as in Equation 5.

6 upclass: Classification Using Updated Classification Rules in R

As before, the a posteriori probabilities of group membership for each observation can be used
to derive the maximum a posteriori (MAP) predicted group membership for each observation.

2.3. Model selection

In implementing model-based discriminant analysis and clustering techniques, the model of
the data must be known. If the model is not known, it is recommended to fit every model
to the data and calculate the Bayesian Information Criterion (BIC) value (Schwarz 1978;
Kass and Raftery 1995) for each model. The BIC value is calculated in such a way where it
penalizes for a large number of parameters and rewards for a large likelihood value.

BIC = 2 log(L)− k log(n)

where L − is the likelihood of the data

k − is the number of estimated model parameters

n − is the number of observations.

The model with the highest BIC value is selected. While this does not always guarantee the
lowest misclassification rate, in practice it often selects a close to optimal model (Biernacki
and Govaert 1999). Biernacki and Govaert (1999) provide an overview of other model selection
criteria for model-based clustering and classification.

3. The new updating method

The backbone of the method employed by upclass is the idea that the unlabeled data may
potentially contain important information about the overall data even though their group
memberships are unknown (Dean et al. 2006). This information can help give a clearer picture
of the structure of the groups in the data. Earlier work in using labeled data to update model-
based classification rules has been carried out by McLachlan (1975, 1977), Ganesalingam and
McLachlan (1978) and O’Neill (1978) amongst others. More recent work includes Nigam,
McCallum, and Mitchell (2006), McNicholas (2010) and Murphy et al. (2010).

We have observed (xN , lN ,yM) and unknown zM . So the observed likelihood is of the form

L(τ, µ,Σ|xN , lN ,yM) =

N∏
n=1

G∏
g=1

[τgφ(xn|µg,Σg)]lng

︸ ︷︷ ︸
labeled data

M∏
m=1

 G∑
g=1

τgφ(ym|µg,Σg)

︸ ︷︷ ︸

unlabeled data

; (7)

this is the product of the likelihood for model-based discriminant analysis (Equation 6) and
model-based clustering (Equation 2). If we treat the unknown labels as missing data, we can
write the likelihood for the complete-data as

Lc(τ, µ,Σ|xN , lN ,yM , zM) =

N∏
n=1

G∏
g=1

[τgφ(xn|µg,Σg)]lng

︸ ︷︷ ︸
labeled data

M∏
m=1

G∏
g=1

[τgφ(ym|µg,Σg)]zmg

︸ ︷︷ ︸
unlabeled data

; (8)

Niamh Russell, Laura Cribbin, Thomas Brendan Murphy 7

this is a product of the likelihood for model-based discriminant analysis (Equation 6) and the
complete-data likelihood for model-based clustering (Equation 3).

The package uses the complete-data log likelihood (Equation 8) and the EM algorithm to
find maximum likelihood estimates for the unknown parameters of the model. The algorithm
then uses these estimated parameters to classify the unlabeled data.

3.1. How it works

There are four general steps used to implement this updated classification rule. They iterate
through the EM algorithm and are made up of the following:

Step 1 Let k = 0. Find initial values for the parameter estimates in the model. Only the
labeled data (xN , lN) are used here along with the M-step of the EM algorithm. This is
equivalent to performing classical model-based discriminant analysis to obtain starting
values for the model parameters, but within the structure of the mclust models.

Step 2 Using the current parameter estimates, τ̂ (k), µ̂(k) and Σ̂
(k)

, calculate the expected
value of the unknown labels through the E-step,

ẑ(k+1)
mg =

τ̂
(k)
g φ(ym|µ̂(k)g , Σ̂

(k)
g)∑G

g′=1 τ̂
(k)
g′ φ(ym|µ̂(k)g′ , Σ̂

(k)
g′)

.

Step 3 Combine (xN , lN) and (yM , ẑ
(k+1)
M) to form the complete-data. Using the complete-

data, calculate new parameter estimates for the model, τ (k+1), µ(k+1) and Σ(k+1),
through the M-step by maximizing the complete-data log-likelihood (Equation 8).

Step 4 Check for convergence of the log-likelihood using the Aitken acceleration convergence
criterion, by default. There is a simpler convergence option also, see Section 5.3. If
convergence has been reached, stop. If not, set k = k+1 and return to Step 2 where new
estimates for the unknown labels are calculated followed by new parameter estimates.

We chose to use the labeled data to calculate the initial parameter estimates. Toher et al.
(2007) did some work on this and showed that, in most cases, this was the most effective
method.

The parameter estimates used in Step 3 are of the following form. The estimate of τ̂
(k+1)
g can

be seen as the average number of observations in each group,

τ̂ (k+1)
g =

∑N
n=1 lng +

∑M
m=1 ẑ

(k+1)
mg

N +M
,

and µ̂
(k+1)
g is a weighted average of the observations, where the labels and their estimates are

used as weights,

µ̂(k+1)
g =

∑N
n=1 lngxn +

∑M
m=1 ẑ

(k+1)
mg ym∑N

n=1 lng +
∑M

m=1 ẑ
(k+1)
mg

.

8 upclass: Classification Using Updated Classification Rules in R

The estimation of Σg depends on the constraints placed on the covariance matrix. For exam-

ple, if the model was VVV, the estimate for Σ̂
(k+1)
g would look like;

Σ̂
(k+1)
g =

∑N
n=1 lng(xn − µ̂(k+1)

g)(xn − µ̂(k+1)
g)′ +

∑M
m=1 ẑ

(k)
mg(ym − µ̂

(k+1)
g)(ym − µ̂

(k+1)
g)′∑N

n=1 lng +
∑M

m=1 ẑ
(k)
mg

.

For further details on parameter estimation and how the covariance matrix for each model
can be calculated, see Bensmail and Celeux (1996).

Once the final converged estimates of the model have been obtained, these maximize the
observed-data likelihood (Equation 7). The resulting parameters and ẑmg values form the
updated classification rule.

4. Where our package fits into existing software

There are some existing R packages that offer functionality for semi-supervised classfication.

One such package is bgmm, written by law Biecek, Szczurek, Vingron, and Tiuryn (2012),
which has parallels with the upclass functionality in that it can be used for mixture models
and it also allows for restrictions on the covariance matrices. The bgmm models are codified
with four-letter strings, the first of which relates to the mean vectors of the components,
which can be the same or different. mclust does not do this, so the first letter of the string
does not appear in our comparison in table 2. The second and third letters relate to the
between covariance and within covariance matrices of the groups, which can either be equal
("E") or different ("D"). The fourth letter letter relates to the covariances in each covariance
matrix which can all be forced to be zero ("0") or different ("D"). We can summarise the
models offered in the two packages in table 2.

upclass bgmm

EII E E 0
VII D E 0
EEI E D 0
VEI
EVI
VVI D D 0
EEE E D D
EEV
VEV
VVV D D D

E E D
D E D

Table 2: Comparison of models available in upclass and bgmm.

Six of the bgmm models are handled by upclass as they are equivalent to existing models in
mclust. Moreover, mclust provides four additional covariance matrix structures.

Niamh Russell, Laura Cribbin, Thomas Brendan Murphy 9

bgmm offers two interesting diagonal models, not proposed by mclust, which are highly par-
simonious, and take advantage of compound symmetry covariance.

Other packages which provide support for semi-supervised classification are spa, written by
Culp (2011) and phyclust, written by Chen (2011). However, spa is designed for graph-based
estimation and linear regression, and not for mixture models. phyclust does propose a mixture
model, but the package is specifically geared towards DNA sequence data, rather than towards
food data.

Therefore, we believe our package adds something new in the arena of semi-supervised clas-
sification. For completeness, we have included some supervised classification functions, for
comparison purposes but they are not the main focus of the package.

5. The software

In this section we will discuss how to use the package upclass in R (R Development Core
Team 2011). It can be implemented in semi-supervised mode or in supervised mode. It
makes extensive use of the package mclust (Fraley et al. 2012). If mclust is not installed,
upclass will install it.

The package is available on CRAN and can be installed using the following code.

[1] 1.26461167 -0.61670573 -0.01859692 -1.39628658 0.15991189 -0.13398282

[7] 0.27331773 1.91194226 -0.68619384 0.56588094

R> install.packages("upclass")

R> library("upclass")

5.1. Summary of functions available in the package

The R package upclass contains the following functions. The use of these will be outlined
in the following sections. The most important of these is upclassify() and this will be
described in most detail.

• The function Aitken() calculates the Aitken acceleration estimate of the final converged
maximized log-likelihood.

• The function modelvec() list the valid model names to be used in the upclass package
for univariate and multivariate data

• The function noupclassify() is used to carry out supervised classification over a range
of different models and find the model that best fits the data.

• The function noupclassifymodel() is an internal work function used by noupclassify.

• The function plot.upclassfit() is a method used to produce a plot of the best model
found by upclassify or noupclassify.

• The function print.upclassfit() is the print method for the user defined class used
by upclass.

10 upclass: Classification Using Updated Classification Rules in R

• The function summary.upclassfit() is the summary method for the user defined class
used by upclass.

• The function upclassify() is the main function in the package. It is used to carry out
semi-supervised classification over a range of different models and find the model that
best fits the data.

• The function upclassifymodel() is an internal work function used by upclassify.

5.2. Setting up the data

To illustrate the use of the functions in upclass, we will employ the olive oil dataset (Forina
et al. 1983). The dataset is found in the classifly package developed by Wickham (2011). We
will set up the data in the following way.

R> data("olives")

R> set.seed(11)

R> X <- as.matrix(olives[,-c(1:2)])

R> cl <- olives[,1]

R> N <- dim(X)[1]

R> indtrain <- sort(sample(1:N, N * 0.2))

R> Xtrain <- X[indtrain,]

R> cltrain <- cl[indtrain]

R> indtest <- setdiff(1:N, indtrain)

R> Xtest <- X[indtest,]

R> cltest <- cl[indtest]

This assigns 20% of the data (114 observations) as labeled data (Xtrain, cltrain), where
Xtrain are the observations and cltrain are their labels. The remaining data (458 obser-
vations) are to be thought of as unlabeled. The observations are stored as Xtest, and their
removed labels as cltest.

Note that we deliberately set the seed at 11, as this is a tricky cut of the data. Setting
the seed at 1, for example, gives excellent classification results from both supervised and
semi-supervised methods.

5.3. The function Aitken()

This internal function takes in a vector of three consecutive log-likelihoods and estimates the
final converged maximized log-likelihood using the method of Aitken acceleration described
by Böhning, Dietz, Schaub, Shlattmann, and Lindsay (1994).
The calling functions can then decide if the log-likelihood has converged based on some spec-
ified tolerance, defaulted to 10−5 in the case of the upclass functions. When using Aitken(),
specify the following argument.

• ll A vector of three consecutive log-likelihoods.

In practice, Aitken acceleration needs three values of the log-likelihood, so at the start of
the algorithm, the calling function should initialise the three components of ll to −∞, and

Niamh Russell, Laura Cribbin, Thomas Brendan Murphy 11

each iteration of the algorithm should update the vector by moving the components along.
This results in a minimum of three iterations being required for any algorithm using Aitken
acceleration as a convergence tool.

This function could, of course, be used by itself, as in the following snippet.

R> ll <- c(-261, -257.46,-256.4)

R> Aitken(ll)

$ll

[1] -256.4

$linf

[1] -254.8869

$a

[1] 0.299435

ll gives the current estimate for the log-likelihood, while linf gives the estimate of the
converged value and if the difference between the two should be less than some specified
tolerance, convergence can be said to have been reached.

5.4. The function modelvec()

The internal function modelvec() stores the valid mclust models in two character vectors,
the first for univariate data and the second for multivariate data for use by other upclass
functions. When using modelvec(), specify the following argument.

• d The dimension of the data being used.

If d is 1, the data is considered to be univariate, and a vector containing the two univariate
models handled by mclust are returned. Otherwise, the vector will contain the ten multivariate
mclust models, as shown.

R> modelvec(1)

[1] "E" "V"

R> modelvec(2)

[1] "EII" "VII" "EEI" "VEI" "EVI" "VVI" "EEE" "EEV" "VEV" "VVV"

5.5. The function upclassify()

The function upclassify() is used to classify unlabeled data by the semi-supervised method
described in section 3.1. It produces estimates for the labels of the data, as well as model
parameters for the models requested. In addition, it provides quantifiable goodness of fit
measures as will be described below. Below is a list of upclassify’s arguments. Note that
the first three must always be included. The remainder are optional.

12 upclass: Classification Using Updated Classification Rules in R

• Xtrain The labeled data - A numeric matrix of data where rows correspond to observa-
tions and columns correspond to variables. The group membership of each observation
is known.

• cltrain A numeric vector with distinct entries representing a classification of the cor-
responding observations in Xtrain

• Xtest The unlabeled data - A numeric matrix of data where rows correspond to observa-
tions and columns correspond to variables. The group membership of each observation
will usually not be known.

• cltest An optional numeric vector with distinct entries representing a classification of
the corresponding observations in Xtest. By default, these are not supplied and the
function sets out to obtain them.

• modelscope A character string indicating the desired models to be tested. With de-
fault NULL, all available models are tested. The models available for univariate and
multivariate data can be retrieved using function modelvec().

• tol The tolerance required for convergence. The default is 10−5.

• iterlim The maximum number of iterations if convergence has not been reached. The
default is 1000.

• Aitken Whether or not Aitken acceleration is to be used. The default is set to TRUE.
A simpler convergence criterion can be used by setting Aitken to FALSE. This method
achieves convergence when two successive values of ll have a difference smaller than
tol. The simpler convergence criterion has been shown to be less strict than the Aitken
one (McNicholas, Murphy, McDaid, and Frost 2010).

The function output for each model comprises a list of sublists, one for each model tried, and
the best one, using the BIC criterion (Schwarz 1978) , which is output first. Each sublist can
be accessed by its model name, and the best one by the name "Best".

In the interests of brevity, we will list each entry in turn instead of showing the actual output.

• $call How to call the function and the order of its arguments.

• $Ntrain The number of observations in the training set.

• $Ntest The number of observation in the test set.

• $d The dimension of the data.

• $G The number of groups in the training data. The package will not try to assign the
test data to any other groups.

• $iter The number of iterations taken.

• $converged Whether or not the algorithm has converged. If $converged is FALSE, then
$iter will be the maximum number of iterations (specified in the function call).

• modelName The model considered in this run of the algorithm.

Niamh Russell, Laura Cribbin, Thomas Brendan Murphy 13

• $parameters A list of the final model parameters estimated by the algorithm.

– $parameters$pro The proportion of the data found to be in each group.

– $parameters$mean Mean vectors for each group.

– $parameters$variance A comprehensive list of variances and covariance matrices
produced by mclust

• $train A list of information about the training data. This will not have changed from
before the run.

– $train$z A matrix containing the estimated probabilities that each observation
in the training data belongs to each group.

– $train$cl A vector containing the new labels of the training data.

– $train$misclass The number of misclassifications of the training data.

– $train$rate The misclassification rate expressed as a percentage.

– $train$Brierscore The Brier score for the training data.

– $train$tab The misclassification table by group.

• $test A list of information about the test data.

– $test$z A matrix containing the estimated probabilities that each observation in
the test data belongs to each group.

– $test$cl A vector containing the estimated labels of the test data. This derives
from the z matrix. Each observation is assigned to the group with the highest
probability.

– $test$misclass The number of misclassifications of the test data.

– $test$rate The misclassification rate expressed as a percentage.

– $test$Brierscore The Brier score for the test data. See below for an explanation
of the Brier score.

– $test$tab The misclassification table by group.

• $ll The log likelihood of the data.

• $bic The Bayes Information Criterion for the specified model.

In our example, we have the test labels to hand so we can include them in our model. The
function will therefore produce classification performance results. If we omitted the cltest

argument, only the model name would be returned, similar to mclust clustering output.

R> fitup <- upclassify(Xtrain, cltrain, Xtest,cltest)

R> fitup

Model Name: VVV

Total Misclassified: 8

Misclassification Rate: 1.747 %

14 upclass: Classification Using Updated Classification Rules in R

Note that the BIC criterion usually selects the model with the lowest misclassification rate,
but not always. With this data split, the VVI model had no misclassifications but had a
less satisfactory BIC than the VVV model. We can confirm this by interrogating the specific
element of the output list.

R> fitup[["VVI"]]$test$misclass

[1] 0

We confirm that the VVI model had no misclassifications. By comparing fitup[["Best"]bic

and fitup[["VVI"]bic, we can see that the BIC for the [["Best"]] model (VVV) is higher.

R> c(fitup[["Best"]]$bic,fitup[["VVI"]]$bic)

[1] -42866.66 -46763.30

This is why the VVV model was chosen, as BIC can always be calculated, whether or not we
have the labels.

If we were interested in a full model list, for the VEV model for example, we could display it
as follows.

R> fitup[["VEV"]]

We omit the output.

In order to classify our data for a smaller selection of models, we make use of the function
modelvec(). If, for some reason, we were only interested in models with groups of equal size
and shape, we could retrieve the mclust models EEI, EEE and EEV from modelvec(2), and
proceed to classify as follows.

R> models <- modelvec(2)

R> modelscope <- c(models[3],models[7],models[8])

R> fitupEE <- upclassify(Xtrain, cltrain, Xtest, cltest, modelscope=modelscope)

R> fitupEE

Model Name: EEV

Total Misclassified: 19

Misclassification Rate: 4.148 %

How do we know it works?

Classification performance can be assessed using percentage misclassification error, provided
we have the correct labels.

In our original example, which we recap here, we used the code

R> fitup <- upclassify(Xtrain, cltrain, Xtest,cltest)

R> fitup

Niamh Russell, Laura Cribbin, Thomas Brendan Murphy 15

Model Name: VVV

Total Misclassified: 8

Misclassification Rate: 1.747 %

We can see that we got 8 observations misclassified, in this case, and a misclassification rate
of 1.747%, but of course, we had the labels to hand. This would not generally be the case.

The Brier score is another useful indication of the accuracy of a probabilistic model prediction,
proposed by Brier (1950). Brier’s score gives an indication of how accurate the classifications
are in terms of probability of group membership rather than just on the hard classification
results. This is most useful when the correct labels are not available.

Briers score =
100

2M

G∑
g=1

M∑
m=1

(lmg − zmg)2,

where lmg are the labels finally assigned to each observation.

and zmg are their a posteriori probabilities.

A perfect prediction gives a Brier score of zero. If zmg is a hard classification rather than the
probability of observation m belonging to group g, then the Brier score becomes equivalent
to the percentage misclassification error.

When classifying any dataset, some observations may be classified into the correct group, but
the probability of membership of that group may not be much larger than the probability of
membership of the other groups. Such observations con- tribute more to the Brier score than
definitively correctly classified observations. Likewise, some observations may be incorrectly
classified, but the probability of belonging to the correct group is not much lower than that
of the chosen group. These observations contribute less to the Brier score than definitively
incorrectly classified observations.

Overall, therefore, the Brier score can be used as an approximation to the misclassification
rate, if the latter is not available.

The Brier score can be retrieved from the output as follows. For the example above:

R> fitup[["Best"]]$test$Brierscore

[1] 1.744615

This is a little lower than the misclassification rate of 1.747% indicating that the incorrectly
classified observations have slightly higher uncertainty associated with them, whereas correctly
classified observations have high probability of belonging to the correct group, (Toher et al.
2007).

For our other example, fitupEE, where we have restricted the classification to those models
of equal size and shape, we get

R> fitupEE[["Best"]]$test$Brierscore

16 upclass: Classification Using Updated Classification Rules in R

[1] 4.148472

We can see that this is very close to the misclassification rate.

5.6. The function upclassifymodel()

This is an internal function used by upclassify() and should not be used on its own. Full
details of arguments and output are in the relevant R helpfile, if required.

5.7. The function noupclassify()

This function is included in the package for convenience. It allows the user to classify data
based on a rule derived from the training set, while taking advantage of mclust’s covariance
structures.

The arguments and the output list are the same as for upclassify() so will not be listed
again. The print(), summary() and plot() methods are also common to both functions.

Still using the 20% labeling example, we can run noupclassify() as we would expect.

R> noupclassify(Xtrain, cltrain, Xtest,cltest)

Model Name: VVV

Total Misclassified: 31

Misclassification Rate: 6.769 %

As before, if we do not have the labels, just the model chosen is returned by the print()

method. The full output can be interrogated in the same way as for upclassify.

5.8. The function noupclassifymodel()

Like upclassifymodel(), this is an internal function and is not designed to be used on its
own and full details of arguments and output are in the R helpfile, if required.

5.9. User defined methods for upclass

Both upclassify and noupclassify have output with the user-defined class of upclassfit.
A print() and a summary() for this class of output has been developed. The print() has
already been detailed for cases where we have labels for the test data. If we do not have these,
the print() method only returns the selected model. Using our example above with the EE*
models, we would get

R> fitupEEnl <- upclassify(Xtrain,cltrain,Xtest,modelscope=modelscope)

R> fitupEEnl

Model Name: EEV

The output from summary() is slightly more extensive.

R> summary(fitupEEnl)

Niamh Russell, Laura Cribbin, Thomas Brendan Murphy 17

Model Name

EEV

Log Likelihood

-21517.02

Dimension

8

Ntrain

114

Ntest

458

bic

-43783.23

and with a little more if we have the labels.

R> summary(fitup)

Model Name

VVV

Log Likelihood

-21007.94

Dimension

8

Ntrain

114

Ntest

458

bic

-42866.66

Total Misclassified: 8

Misclassification Rate: 1.747 %

Any of the other output generated by upclassify() or noupclassify() can always be in-
terrogated from the list. See Sections 5.5 and 5.7.

There is also a plot() function which shows the z values of the test data in graphical form.
Problem points can easily be identified. See figure 2.

It should be noted that we left the label percentage at 20% but we changed the data set-up
described in Section 5.2 to use set.seed(4). This was to get plots with some less clearcut
classifications. We used fitup4 and fitnoup4 as the names for our new fitted models to
avoid ambiguity.

The plot for the upclassify() output follows.

R> fitup4 <- upclassify(Xtrain, cltrain, Xtest,cltest)

R> plot(fitup4)

We can see that most points are classified with a zig value of very close to 1 or 0, indicating a
very high probability of belonging to a particular group, and a correspondingly low probability
of belonging to any of the other groups, resulting in a straightforward classification decision.

18 upclass: Classification Using Updated Classification Rules in R

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

0 50 150 250 350 450

Group 1
Group 2
Group 3

Posterior Probability of Group Membership

Observation

P
o
s
te

ri
o
r

P
ro

b
a
b
ili

ty

Figure 2: Z-values of a test subset of the olive oil data, using semi-supervised classification.

However if we look at observation 266 in the output’s test z-matrix, we can see that its values
are less than ideal, with similar posterior probabilities of being in either group 1 or group 3.

R> fitup4$Best$test$z[266,]

[1] 5.532143e-01 9.056811e-15 4.467857e-01

Although, upclassify will still classify this observation into group 1, the plot helps to show
that this point may warrant further investigation.

For interest, we also supply a plot of the noupclassify() output for the same cut of the
data. It shows a difficulty in classifying the group 2 data, using this method.

R> fitnoup4 <- noupclassify(Xtrain, cltrain, Xtest,cltest)

R> plot(fitnoup)

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

0 50 150 250 350 450

Group 1
Group 2
Group 3

Posterior Probability of Group Membership

Observation

P
o
s
te

ri
o
r

P
ro

b
a
b
ili

ty

Figure 3: Z-values of the same subset of the olive oil data, using supervised classification.

5.10. Comparing our method with supervised classification (using mclust)

Niamh Russell, Laura Cribbin, Thomas Brendan Murphy 19

We compare how our method performs compared to classification rules formed using the
training data only using the olive oil data set (Forina et al. 1983) as an example. This data
set is made up of eight variables which measure the percentage composition of eight fatty
acids on 572 olive oils. Each oil is from one of three Italian regions; North Italy, South Italy
and Sardinia. Note that we did not classify by geographical area within region, neither did
we include this finer geographical area variable in our training/test data.

To carry out this comparison, we created a function called noupclassify() which uses the
mstep() command in mclust and loops through the selected covariance structures.

The data were randomly split into training (labeled) and test (unlabeled) data with a given
percentage being assigned as training data. This process was repeated 200 times and each
time, we classified the split of the data using both methods. In each case, the best model was
selected using BIC and the classification performance was recorded for this model.

The code for this simulation test appears in the appendix.

Table 3 shows the results of classification tests using model-based discriminant analysis and
the updated method, and also the number of times each model was selected at each level. It
can be seen that VVV is selected as the best model until only 15% of the data are labeled.
The VVV model, as the one with the most parameters, requires the training data to be of a
certain size to work efficiently. On some data splits where fewer than 15% of the observations
are labeled, some groups had insufficient observations to fit the VVV model so simpler models
were selected; in these cases the selected models enumerated by the numbers in brackets. The
variance of the misclassification rates is displayed in square brackets.

Labeled Classical Models Updated Models

data method method

90% 0.08 [0.128] VVV 0.04 [0.073] VVV
80% 0.10 [0.077] VVV 0.07 [0.056] VVV
70% 0.15 [0.093] VVV 0.08 [0.041] VVV
60% 0.19 [0.093] VVV 0.09 [0.036] VVV
50% 0.32 [0.174] VVV 0.12 [0.064] VVV
40% 0.45 [0.230] VVV 0.16 [0.095] VVV
30% 0.79 [0.531] VVV 0.25 [0.239] VVV
20% 2.24 [5.474] VVV 0.57 [0.989] VVV
15% 5.04 [19.06] VVV (195) 1.29 [6.541] VVV (194)

VEV (2) VEV (6)
EEE (3)

10% 11.46 [47.01] VVV (141) 3.30 [23.44] VVV (137)
VEV (42) VEV (59)
EEE (17) EEV (10)

Table 3: Olive oil data: The percentage of labeled data versus the average misclassification
rate (reported as a percentage) for the classical and updated methods. The frequency that
each covariance structure was selected is also shown.

The results in Table 3 show the updated method outperforming the classical method at every
level, although the methods show comparable results when more than 30% of the data are

20 upclass: Classification Using Updated Classification Rules in R

labeled. However, at the 30% level and lower, the results from the updated method far surpass
those from the classical method.

At the 10% level, the difference between the two methods is very apparent. In this case, 515
observations are unlabeled out of the total of 572. The classical method misclassified nearly
11.5% of the unlabeled observations, which corresponds to 59 observations. The updated
method has misclassified only 3.3% of the unlabeled data, which corresponds to only 17
observations.

Figure 4 compares the results of the two methods for each of the 200 iterations at the 10%
level of labeled data.

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●
●

●

●

●●

●

●
●

●

0 50 100 150 200

0
10

20
30

40

Difference Misclassified

Iteration

D
iff

er
en

ce
 (

C
la

ss
ic

al
 −

 U
pd

at
ed

)

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●● ●

●

●

●

●

●

●

●

●● ●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

0 5 10 15

0
10

20
30

40

Percentage Misclassified

Updated Method

C
la

ss
ic

al
 M

et
ho

d

(a) (b)

Figure 4: Olive oil data: Comparing the classical and updated methods at the 10% level: (a)
shows the difference in the number of misclassified observations for the classical and updated
methods. (b) shows a scatter plot of the number of misclassified observations for the classical
and updated methods.

Figure 4(a) shows that the updated method almost always gives better results than the
classical method. The updated method yielded a lower misclassification rate on 188 iterations
out of 200, the same misclassification rate on 3 iterations and an inferior misclassification
rate on 9 iteration. Figure 4(b) shows the number of observations that were misclassified by
each method on each iteration. On 24 iterations, the classical method misclassified at least
20% of the unlabeled observations reaching a maximum of misclassifying almost 30% of the
unlabeled observations for one iteration.

6. Discussion

We have presented a problem in data classification that occurs frequently in many areas,
namely to classify unlabeled observations when only in possession of a small amount of labeled

Niamh Russell, Laura Cribbin, Thomas Brendan Murphy 21

data. As such it would be of interest to researchers in food science, medical diagnostics,
botany, or any area where such a scenario is commonplace.

We have introduced an R package called upclass which goes some way to addressing this
problem. As we saw in Section 3 we can take advantage of the complete-data (both labeled and
unlabeled) to create a classifier. The package is an implementation of the method developed
in Dean et al. (2006), and takes advantage of the EM algorithm functionality developed by
Fraley et al. (2012) in the package mclust.

We have described the functions available in the package in Section 5. The user can use the
function upclassify to classify his data over the full range of models described in Section 2.1,
or to select one or more suitable models. It is possible to vary the parameters to control conver-
gence criteria, and also control the output produced. The function noupclassify is provided
to carry out supervised classification, if desired. Functions are provided to interrogate the
output from the functions in the package.

We have shown (in Table 3) that this method can provide better results at low levels of
labeling than supervised classification.

The main limitation of the idea is that we assume that each group can be modeled by a normal
distribution as we discussed in Section 2.1; in some applications this assumption may not be
appropriate. Also, at very low levels of labeling, upclass cannot fit all possible models for
the data, and must choose among the models with a suitably reduced number of parameters
where model fitting is feasible.

The package is currently based on the ten covariance structures in mclust however fourteen
covariance structures are possible within the modified eigen-decomposition. It would be in-
teresting to extend the approach to all fourteen covariance structures (Biernacki et al. 2006)
to increase the flexibility of this approach further.

A possible avenue for exploration, is to cater for the situation where not all groups are
represented in the training set. This becomes more and more likely at very low levels of
labeling, and might have other applications if any new datapoint belongs to a previously
unknown group.

Acknowledgements

The authors would like to thank the associate editor and two anonymous referees for their
helpful remarks and suggestions that contributed to a better presentation of the paper.

This research is supported by the Programme for Research In Third Level Institutions (PRTLI)
Cycle 5 and co-funded by the European Regional Development Fund, and the Science Foun-
dation Ireland Research Frontiers Programme (2007/RFP/MATF281).

A. Simulation Code

R> library(mclust)

R> library(classifly)

R> set.seed(1)

R> prop <- 0.9 #change this to vary proportions of labelled data.

22 upclass: Classification Using Updated Classification Rules in R

R> data(olives)

R> runlength <- 200

R> nomodel <- vector(mode="character", length=runlength)

R> model <- vector(mode="character", length=runlength)

R> ratevec <- vector(mode="numeric", length=runlength)

R> noratevec <- vector(mode="numeric", length=runlength)

R> for(j in c(1:runlength))

R> {

R> X <- as.matrix(olives[,-c(1,2)])

R> cl <- unclass(olives[,1])

R> N <- dim(X)[1]

R> indtrain <- sort(sample(1:N,N * prop))

R> Xtrain <- X[indtrain,]

R> cltrain <- cl[indtrain]

R> indtest <- setdiff(1:N, indtrain)

R> Xtest <- X[indtest,]

R> cltest <- cl[indtest]

R> fitnoup <- noupclassify(Xtrain,cltrain,Xtest,cltest)

R> noratevec[j] <- fitnoup[["Best"]]$test$rate

R> nomodel[j] <- fitnoup[["Best"]]$modelName

R> fitup <- upclassify(Xtrain,cltrain,Xtest,cltest)

R> ratevec[j] <- fitup[["Best"]]$test$rate

R> model[j] <- fitup[["Best"]]$modelName

R> }

R> list1 <- list()

R> list1$percentage <- pcentvec[i]*100

R> list1$notable <- table(nomodel)

R> list1$noratevec <- noratevec

R> list1$table <- table(model)

R> list1$ratevec <- ratevec

R> list1$var1 <- var(ratevec)

R> list1$novar1 <- var(noratevec)

R> list1

References

Banfield JD, Raftery AE (1993). “Model-Based Gaussian and Non-Gaussian Clustering.”
Biometrics. Journal of the Biometric Society, 49(3), 803–821.

Bensmail H, Celeux G (1996). “Regularized Gaussian Discriminant Analysis through Eigen-
value Decomposition.” Journal of the American Statistical Association, 91(436), 1743–1748.

Niamh Russell, Laura Cribbin, Thomas Brendan Murphy 23

Biernacki C, Celeux G, Govaert G, Langrognet F (2006). “Model-Based Cluster and Discrim-
inant Analysis with the MIXMOD Software.” Computational Statistics & Data Analysis,
51(2), 587–600.

Biernacki C, Govaert G (1999). “Choosing Models in Model-Based Clustering and Discrimi-
nant Analysis.” Journal of Statistical Computation and Simulation, 64, 49–71.

Böhning D, Dietz E, Schaub R, Shlattmann P, Lindsay B (1994). “The Distribution of the
Likelihood Ratio for Mixtures of Densities from the One-Parameter Exponential Family.”
Annals of the Institute of Statistical Mathematics, 46(2), 373–388.

Brier GW (1950). “Verification of Forecasts Expressed in Terms of Probability.” Monthly
Weather Review, 78(1), 1–3.

Caetano S, Üstün B, Hennessy S, Smeyers-Verbeke J, Melssen W, Downey G, Buydens L,
Vander Heyden Y (2007). “Geographical Classification of Olive Oils by the Application of
CART and SVM to their FT-IR.” Journal of Chemometrics, 21(7-9), 324–334.

Chapelle O, Schölkopf B, Zien A (eds.) (2006). Semi-Supervised Learning. MIT Press, Cam-
bridge, MA.

Chen W (2011). Overlapping Codon Model, Phylogenetic Clustering, and Alternative Partial
Expectation Conditional Maximisation Algorithm. Ph.D. thesis, Iowa State University. URL
http://thirteen-01.stat.iastate.edu/snoweye/phyclust.

Culp M (2011). “spa: A Semi-Supervised R Package for Semi-Parametric Graph-Based Esti-
mation.” Journal of Statistical Software, 40(10), 1–29. URL http://www.jstatsoft.org/

v40/i10/.

Dean N, Murphy TB, Downey G (2006). “Using Unlabelled Data to Update Classification
Rules with Applications in Food Authenticity Studies.” Journal of the Royal Statistical
Society. Series C. Applied Statistics, 55(1), 1–14.

Dempster AP, Laird NM, Rubin DB (1977). “Maximum Likelihood from Incomplete Data
via the EM Algorithm.” Journal of the Royal Statistical Society. Series B. Methodological,
39(1), 1–38. With Discussion.

Fan Y, Murphy TB, Byrne J, Brennan L, Fitzpatrick J, Watson RWG (2011). “Applying
Random Forests to Identify Biomarker Panels in Serum 2D-DIGE Data for the Detection
and Staging of Prostate Cancer.” Journal of Proteome Research, 10(3), 1361–1373.

Forina M, Armanino C, Lanteri S, Tiscornia E (1983). “Classification of Olive Oils from Their
Fatty Acid Composition.” In H Martens, H Russwurm Jr (eds.), Food Research and Data
Analysis, pp. 189–214. Applied Science Publishers, London.

Fraley C, Raftery A (2007). “Model-Based Methods of Classification: Using the mclust
Software in Chemometrics.” Journal of Statistical Software, 18(6), 1–13.

Fraley C, Raftery AE (2002). “Model-Based Clustering, Discriminant Analysis, and Density
Estimation.” Journal of the American Statistical Association, 97(458), 611–631.

http://thirteen-01.stat.iastate.edu/snoweye/phyclust
http://www.jstatsoft.org/v40/i10/
http://www.jstatsoft.org/v40/i10/

24 upclass: Classification Using Updated Classification Rules in R

Fraley C, Raftery AE, Murphy TB, Scrucca L (2012). “mclust Version 4 for R: Normal Mixture
Modeling for Model-Based Clustering, Classification, and Density Estimation.” Technical
Report 597, Department of Statistics, University of Washington.

Ganesalingam S, McLachlan GJ (1978). “The Efficiency of a Linear Discriminant Function
Based on Unclassified Initial Samples.” Biometrika, 65(3), 658–662.

Joachims T (1999). “Transductive Inference for Text Classification using Support Vector
Machines.” In ICML ’99: Proceedings of the Sixteenth International Conference on Machine
Learning, pp. 200–209. Morgan Kaufmann Publishers Inc., San Francisco, CA, USA. ISBN
1-55860-612-2.

Kass R, Raftery AE (1995). “Bayes Factors and Model Uncertainty.” Journal of the American
Statistical Association, 90, 773–795.

law Biecek P, Szczurek E, Vingron M, Tiuryn J (2012). “The R Package bgmm: Mixture
Modeling with Uncertain Knowledge.” Journal of Statistical Software, 47(3).

McLachlan G (1992). Discriminant Analysis and Statistical Pattern Recognition. Wiley, New
York.

McLachlan GJ (1975). “Iterative Reclassification Procedure for Constructing an Asymptot-
ically Optimal Rule of Allocation in Discriminant Analysis.” Journal of the American
Statistical Association, 70, 365–369.

McLachlan GJ (1977). “Estimating the Linear Discriminant Function from Initial Samples
Containing a Small Number of Unclassified Observations.” Journal of the American Statis-
tical Association, 72(358), 403–406.

McNicholas PD (2010). “Model-Based Classification using Latent Gaussian Mixture Models.”
Journal of Statistical Planning and Inference, 140(5), 1175–1181.

McNicholas PD, Murphy TB, McDaid AF, Frost D (2010). “Serial and Parallel Implementa-
tions of Model-Based Clustering via Parsimonious Gaussian Mixture Models.” Computa-
tional Statistics & Data Analysis, 54(3), 711–723.

Murphy TB, Dean N, Raftery AE (2010). “Variable Selection and Updating in Model-Based
Discriminant Analysis for High Dimensional Data with Food Authenticity Applications.”
Annals of Applied Statistics, 4(1), 396–421.

Nigam K, McCallum A, Mitchell T (2006). “Semi-Supervised Text Classification Using EM.”
In O Chapelle, B Schölkopf, A Zien (eds.), Semi-Supervised Learning. MIT Press, Boston.

O’Neill TJ (1978). “Normal Discrimination with Unclassified Observations.” Journal of the
American Statistical Association, 73(364), 821–826.

Pouteau R, Meyer JY, Taputuarai R, Stoll B (2012). “Support Vector Machines to Map Rare
and Endangered Native Plants in Pacific Islands Forests.” Ecological Informatics, 9, 37–46.

R Development Core Team (2011). R: A Language and Environment for Statistical Computing.
R Foundation for Statistical Computing, Vienna, Austria. ISBN 3-900051-07-0, URL http:

//www.R-project.org/.

http://www.R-project.org/
http://www.R-project.org/

Niamh Russell, Laura Cribbin, Thomas Brendan Murphy 25

Ripley BD (1996). Pattern Recognition and Neural Networks. Cambridge University Press.

Schwarz G (1978). “Estimating the Dimension of a Model.” The Annals of Statistics, 6(2),
461–464.

Toher D, Downey G, Murphy TB (2007). “A Comparison of Model-Based and Regression
Classification Techniques Applied to Near Infrared Spectroscopic Data in Food Authenti-
cation Studies.” Chemometrics and Intelligent Laboratory Systems, 89(2), 102–115.

Toher D, Downey G, Murphy TB (2011). “Semi-Supervised Linear Discriminant Analysis.”
Journal of Chemometrics, 25(12), 621–630.

Wang Y, Chen S, Zhou ZH (2012). “New Semi-Supervised Classification Method Based
on Modified Cluster Assumption.” IEEE Transactions on Neural Networks and Learning
Systems, 23(5), 689–702.

Wickham H (2011). classifly: Explore Classification Models in High Dimensions. R package
version 0.3, URL http://CRAN.R-project.org/package=classifly.

Zhu X, Goldberg AB (2009). “Introduction to Semi-Supervised Learning.” Synthesis Lectures
on Artificial Intelligence and Machine Learning, 3(1), 1–130.

Affiliation:

Niamh Russell
Complex and Adaptive Systems Laboratory
& School of Mathematical Sciences
Belfield Office Park
Clonskeagh
Dublin 4.
E-mail: niamh.russell.1@ucdconnect.ie

http://CRAN.R-project.org/package=classifly
mailto:niamh.russell.1@ucdconnect.ie

	Introduction
	Model-Based Methods
	Model-based clustering
	Model-based discriminant analysis
	Model selection

	Updating
	How it works

	Where our package fits into existing software
	Software
	Summary of functions available in the package
	Setting up the data
	The function Aitken()
	The function modelvec()
	The function upclassify()
	How do we know it works?

	The function upclassifymodel()
	The function noupclassify()
	The function noupclassifymodel()
	Customised methods for upclass
	Comparing our method with supervised classification (using mclust)

	Discussion
	Simulation Code

