Nothing
#
# (c) 2021 Andreas Geyer-Schulz
# Simple Genetic Algorithm in R. V0.1
# Layer: Gene-Level Functions
# For a binary gene representation.
# Package: xegaPermGene
#
#' Initialize a gene with a permutation of integers
#'
#' @description \code{xegaPermInitGene} generates a random permutation
#' with a given length n.
#'
#'
#' @details In the permutation representation of
#' package \code{xegaPerm}, \emph{gene} is a list with
#' \enumerate{
#' \item \code{$evaluated}: Boolean: TRUE if the fitness is known.
#' \item \code{$fit}: The fitness of the genotype of
#' \code{$gene1}.
#' \item \code{$gene1}: The permutation (the genetopye).
#' }
#'
#' This representation makes several code optimizations
#' and generalizations easier.
#'
#' @param lF Local configuration of the genetic algorithm.
#'
#' @return A permutation gene.
#'
#' @family Initialization
#'
#' @examples
#' xegaPermInitGene(lFxegaPermGene)
#'
#' @export
xegaPermInitGene<-function(lF)
{
gene1<-sample(1:lF$penv$genelength(), lF$penv$genelength(), replace=FALSE)
return(list(evaluated=FALSE, evalFail=FALSE, fit=0, gene1=gene1))
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.