#' hessianObjectness
#'
#' Interface to ITK filter. Based on the paper by Westin et al.,
#' "Geometrical Diffusion Measures for MRI from Tensor Basis Analysis" and
#' Luca Antiga's Insight Journal paper http://hdl.handle.net/1926/576.
#'
#' @param image input image
#' @param objectDimension 0: 'sphere', 1: 'line', or 2: 'plane'.
#' @param isBrightObject Set 'true' for enhancing bright objects and 'false' for dark objects.
#' @param sigmaMin Define scale domain for feature extraction.
#' @param sigmaMax Define scale domain for feature extraction.
#' @param numberOfSigmaSteps Define number of samples for scale space.
#' @param useSigmaLogarithmicSpacing Define sample spacing the for scale space.
#' @param alpha Hessian filter parameter.
#' @param beta Hessian filter parameter.
#' @param gamma Hessian filter parameter.
#' @param setScaleObjectnessMeasure ...
#' @return hessian objectness image.
#'
#' @author NJ Tustison
#'
#' @examples
#' image <- antsImageRead(getANTsRData("r16"))
#' hessianObjectnessImage <- hessianObjectness(image)
#'
#' @export hessianObjectness
hessianObjectness <- function( image,
objectDimension = 1,
isBrightObject = TRUE,
sigmaMin = 0.1,
sigmaMax = 10.0,
numberOfSigmaSteps = 10,
useSigmaLogarithmicSpacing = TRUE,
alpha = 0.5,
beta = 0.5,
gamma = 5.0,
setScaleObjectnessMeasure = TRUE )
{
outputImage <- ANTsRCore::hessianObjectnessR(
antsImageClone(image), objectDimension, isBrightObject,
sigmaMin, sigmaMax, numberOfSigmaSteps, useSigmaLogarithmicSpacing,
alpha, beta, gamma, setScaleObjectnessMeasure)
return(outputImage)
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.