Derivation of Greenwood's Formula

First, We Must Identify The Parameter $\theta$

Next, Find The Variance of The Parameter $Var[\theta]$

$$E[\hat{p}]=E\left[\frac{x}{n}\right]=\frac{E[x]}{n}=\frac{np}{n}=p$$

$$ \begin{aligned} Var[\hat{p}]&=Var[p]\\ &=Var\left[\frac{x}{n}\right]=\frac{1}{n^{2}}Var[x]=\frac{Var[x]}{n^{2}}\\\ &=\frac{np(1-p)}{n^{2}}=\frac{p(1-p)}{n}\ \end{aligned} $$

Now, What is The Function of the Parameter$g(\theta)?$

$$ \begin{aligned} S(t_{i})&=\prod_{j=1}^{i}[1-p_{j}], i=1,...,m \ &=(1-p_{1})(1-p_{2})...(1-p_{i})\ &=(q_{1})(q_{2})...(q_{i}) \end{aligned} $$

Finally, What is $\frac{\partial g(\theta_{i})}{\partial \theta_{i}}, \;\; i=1,...m$?

$$ \begin{aligned} \frac{\partial S(t_{i})}{\partial q_{i}}&=\frac{\partial \left( q_{1}q_{2}...q_{i-1}q_{i}\right)}{\partial q_{i}}\\\ &=q_{1}q_{2}...q_{i-1}\\\ &=\frac{S(t_{i})}{q_{i}}\ \end{aligned} $$

Putting Everything Together

$$ \begin{aligned} Var[S(t_{i})]&=\sum_{j=1}^{i}\left[\frac{\partial S(t_{i})}{\partial q_{j}}\right]^{2}Var(q_{j})\\ &=\sum_{j=1}^{i}\left[\frac{S(t_{i})}{q_{j}}\right]^{2}\frac{p_{j}(1-p_{j})}{n_{j}}\\ &=S(t_{i})^{2}\sum_{j=1}^{i}\frac{p_{j}(1-p_{j})}{n_{j}(1-p_{j})^{2}}\\ &=S(t_{i})^{2}\sum_{j=1}^{i}\frac{p_{j}}{n_{j}(1-p_{j})} \end{aligned} $$

3.6.2 - Greenwood's formula

Substituting the estimated values into (3.8) gives what is known as Greenwood's formula

$$\displaystyle \widehat{Var}\left[\hat{F}(t_{i})\right]=\widehat{Var}\left[\hat{S}(t_i)\right]=\left[\hat{S}(t_{i})\right]^{2}\sum_{j=1}^{i}\frac{\hat{p}{j}}{n{j}(1-\hat{p_{j}})}$$

Greenwood's formula can then be used to estimate the standard error of $\hat{F}(t_{i})$ as

$$\hat{se}{\hat{F}}=\sqrt{\widehat{Var}[\hat{F}(t{i})]}$$



Auburngrads/teachingApps documentation built on June 17, 2020, 4:57 a.m.