R/core.R

Defines functions namesToModels getLogLambda getFPBP matchToDensity subsetAndWeightFraglist matchReadsToFraglist gaToReadsOnTx txToExon txToGenome genomeToTx mapTxToGenome endRight startLeft buildFragtypes

Documented in buildFragtypes

#' alpine: bias corrected transcript abundance estimation
#'
#' alpine is a package for estimating and visualizing many forms of sample-specific
#' biases that can arise in RNA-seq, including fragment length
#' distribution, positional bias on the transcript, read
#' start bias (random hexamer priming), and fragment GC content
#' (amplification). It also offers bias-corrected estimates of
#' transcript abundance (FPKM). It is currently designed for
#' un-stranded paired-end RNA-seq data.
#'
#' See the package vignette for a detailed workflow.
#' 
#' The main functions in this package are:
#' \enumerate{
#' \item \link{buildFragtypes} - build out features for fragment types from exons of a single gene (GRanges)
#' \item \link{fitBiasModels} - fit parameters for one or more bias models over a set of ~100 medium to highly expressed single isoform genes (GRangesList)
#' \item \link{estimateAbundance} - given a set of genome alignments (BAM files) and a set of isoforms of a gene (GRangesList), estimate the transcript abundances for these isoforms (FPKM) for various bias models
#' \item \link{extractAlpine} - given a list of output from \code{estimateAbundance}, compile an FPKM matrix across transcripts and samples
#' \item \link{predictCoverage} - given the exons of a single gene (GRanges) predict the coverage for a set of samples given fitted bias parameters and compute the observed coverage
#' }
#'
#' Some helper functions for preparing gene objects:
#' \enumerate{
#' \item \link{splitGenesAcrossChroms} - split apart "genes" where isoforms are on different chromosomes
#' \item \link{splitLongGenes} - split apart "genes" which cover a suspiciously large range, e.g. 1 Mb
#' \item \link{mergeGenes} - merge overlapping isoforms into new "genes"
#' }
#'
#' Some other assorted helper functions:
#' \enumerate{
#' \item \link{normalizeDESeq} - an across-sample normalization for FPKM matrices
#' \item \link{getFragmentWidths} - return a vector estimated fragment lengths given a set of exons for a single gene (GRanges) and a BAM file
#' \item \link{getReadLength} - return the read length of the first read across BAM files
#' }
#' 
#' The plotting functions are:
#' \enumerate{
#' \item \link{plotGC} - plot the fragment GC bias curves
#' \item \link{plotFragLen} - plot the framgent length distributions
#' \item \link{plotRelPos} - plot the positional bias (5' to 3')
#' \item \link{plotOrder0}, \link{plotOrder1}, \link{plotOrder2} - plot the read start bias terms
#' \item \link{plotGRL} - a simple function for visualizing GRangesList objects
#' }
#'
#' @references
#'
#' Love, M.I., Hogenesch, J.B., and Irizarry, R.A.,
#' Modeling of RNA-seq fragment sequence bias reduces
#' systematic errors in transcript abundance estimation.
#' Nature Biotechnologyh (2016) doi: 10.1038/nbt.3682
#'
#' @author Michael Love
#'
#' @importFrom splines ns
#' @importFrom speedglm speedglm.wfit
#' @importFrom stringr str_c
#' @importFrom graph ftM2graphNEL
#' @importFrom RBGL connectedComp
#' @importFrom GenomicFeatures mapToTranscripts
#' @importFrom graphics abline legend lines par plot points segments
#' @importFrom stats density dpois formula glm model.matrix poisson
#' @importFrom methods as is
#' @importFrom GenomeInfoDb seqlevels keepSeqlevels
#' @importFrom S4Vectors DataFrame queryHits subjectHits
#' @import Biostrings IRanges GenomicRanges GenomicAlignments Rsamtools SummarizedExperiment
#' 
#' @docType package
#' @name alpine-package
#' @aliases alpine-package
#' @keywords package
NULL

#' Build fragment types from exons
#'
#' This function constructs a DataFrame of fragment features used for
#' bias modeling, with one row for every potential fragment type that could
#' arise from a transcript. The output of this function is used by
#' \link{fitBiasModels}, and this function is used inside \link{estimateAbundance}
#' in order to model the bias affecting different fragments across isoforms
#' of a gene.
#' 
#' @param exons a GRanges object with the exons for a single transcript
#' @param genome a BSgenome object
#' @param readlength the length of the reads. This doesn't necessarily
#' have to be exact (+/- 1 bp is acceptable)
#' @param minsize the minimum fragment length to model. The interval between
#' \code{minsize} and \code{maxsize} should contain the at least the
#' central 95 percent of the fragment length distribution across samples
#' @param maxsize the maximum fragment length to model
#' @param gc logical, whether to calculate the fragment GC content
#' @param gc.str logical, whether to look for presence of
#' stretches of very high GC within fragments
#' @param vlmm logical, whether to calculate the Cufflinks Variable Length
#' Markov Model (VLMM) for read start bias
#'
#' @return a DataFrame with bias features (columns) for all
#' potential fragments (rows)
#'
#' @examples
#'
#' library(GenomicRanges)
#' library(BSgenome.Hsapiens.NCBI.GRCh38)
#' data(preprocessedData)
#' readlength <- 100
#' minsize <- 125 # see vignette how to choose
#' maxsize <- 175 # see vignette how to choose
#' fragtypes <- buildFragtypes(ebt.fit[["ENST00000624447"]],
#'                             Hsapiens, readlength,
#'                             minsize, maxsize)
#' 
#' @export
buildFragtypes <- function(exons, genome, readlength,
                           minsize, maxsize, 
                           gc=TRUE, gc.str=TRUE, vlmm=TRUE) {
  stopifnot(is(exons,"GRanges"))
  stopifnot(is(genome,"BSgenome"))
  stopifnot(is.numeric(minsize) & is.numeric(maxsize) & is.numeric(readlength))
  stopifnot(sum(width(exons)) >= maxsize)
  stopifnot(all(c("exon_rank","exon_id") %in% names(mcols(exons))))
  stopifnot(!any(strand(exons) == "*"))
  
  # these parameters must be fixed, as dictated by fitVLMM()
  npre <- 8
  npost <- 12
  
  map <- mapTxToGenome(exons)
  l <- nrow(map)
  strand <- as.character(strand(exons)[1])
  start <- rep(seq_len(l-minsize+1),each=maxsize-minsize+1)
  end <- as.integer(start + minsize:maxsize - 1)
  mid <- as.integer(0.5 * (start + end))
  relpos <- mid/l
  fraglen <- as.integer(end - start + 1)
  id <- IRanges(start, end)
  fragtypes <- DataFrame(start=start,end=end,relpos=relpos,fraglen=fraglen,id=id)
  fragtypes <- fragtypes[fragtypes$end <= l,,drop=FALSE]
  exon.dna <- getSeq(genome, exons)
  tx.dna <- unlist(exon.dna)
  if (vlmm) {
    # strings needed for VLMM
    fragtypes$fivep.test <- fragtypes$start - npre >= 1
    fragtypes$fivep <- as(Views(tx.dna, fragtypes$start - ifelse(fragtypes$fivep.test, npre, 0),
                                fragtypes$start + npost), "DNAStringSet")
    fragtypes$threep.test <- fragtypes$end + npre <= length(tx.dna) 
    fragtypes$threep <- as(Views(tx.dna, fragtypes$end - npost,
                                 fragtypes$end + ifelse(fragtypes$threep.test, npre, 0),),
                           "DNAStringSet")
    # reverse complement the three prime sequence
    fragtypes$threep <- reverseComplement(fragtypes$threep)
  }
  if (gc) {
    # get the GC content for the entire fragment
    fragrange <- minsize:maxsize
    gc.vecs <- lapply(fragrange, function(i) {
                        letterFrequencyInSlidingView(tx.dna, view.width=i, letters="CG", as.prob=TRUE)
                      })
    fragtypes <- fragtypes[order(fragtypes$fraglen),,drop=FALSE]
    fragtypes$gc <- do.call(c, gc.vecs)
    fragtypes <- fragtypes[order(fragtypes$start),,drop=FALSE]
  }
  if (gc.str) {
    # additional features: GC in smaller sections
    gc.40 <- as.numeric(letterFrequencyInSlidingView(tx.dna, 40, letters="CG", as.prob=TRUE))
    max.gc.40 <- max(Views(gc.40, fragtypes$start, fragtypes$end - 40 + 1))
    gc.20 <- as.numeric(letterFrequencyInSlidingView(tx.dna, 20, letters="CG", as.prob=TRUE))
    max.gc.20 <- max(Views(gc.20, fragtypes$start, fragtypes$end - 20 + 1))
    fragtypes$GC40.90 <- as.numeric(max.gc.40 >= 36/40)
    fragtypes$GC40.80 <- as.numeric(max.gc.40 >= 32/40)
    fragtypes$GC20.90 <- as.numeric(max.gc.20 >= 18/20)
    fragtypes$GC20.80 <- as.numeric(max.gc.20 >= 16/20)
  }
  # these are the fragment start and end in genomic space
  # so for minus strand tx, gstart > gend
  fragtypes$gstart <- txToGenome(fragtypes$start, map)
  fragtypes$gend <- txToGenome(fragtypes$end, map)
  fragtypes$gread1end <- txToGenome(fragtypes$start + readlength - 1, map)
  fragtypes$gread2start <- txToGenome(fragtypes$end - readlength + 1, map)
  #message("nrow fragtypes: ",nrow(fragtypes))
  fragtypes
}

######### unexported core functions #########

startLeft <- function(x) {
  first.plus <- as.logical(strand(first(x)) == "+")
  ifelse(first.plus, start(first(x)), start(last(x)))
}
endRight <- function(x) {
  first.plus <- as.logical(strand(first(x)) == "+")
  ifelse(first.plus, end(last(x)), end(first(x)))
}
mapTxToGenome <- function(exons) {
  strand <- as.character(strand(exons)[1])
  stopifnot(all(exons$exon_rank == seq_along(exons)))
  bases <- if (strand == "+") {
    do.call(c,lapply(exons, function(exon) start(exon):end(exon)))
  } else if (strand == "-") {
    do.call(c,lapply(exons, function(exon) end(exon):start(exon)))    
  }
  data.frame(tx=seq_along(bases),
             genome=bases,
             exon_rank=rep(exons$exon_rank, width(exons)))
}
genomeToTx <- function(genome, map) map$tx[match(genome, map$genome)]
txToGenome <- function(tx, map) map$genome[match(tx, map$tx)]
txToExon <- function(tx, map) map$exon_rank[match(tx, map$tx)]
gaToReadsOnTx <- function(ga, grl, fco=NULL) {
  reads <- list()
  for (i in seq_along(grl)) {
    exons <- grl[[i]]
    strand <- as.character(strand(exons)[1])
    read.idx <- if (is.null(fco)) {
      seq_along(ga)
    } else {
      queryHits(fco)[subjectHits(fco) == i]
    }
    map <- mapTxToGenome(exons)
    # depending on strand of gene:
    # start of left will be the first coordinate on the transcript (+ gene)
    # or start of left will be the last coordinate on the transcript (- gene)
    if (strand == "+") {
      start <- genomeToTx(startLeft(ga[read.idx]), map)
      end <- genomeToTx(endRight(ga[read.idx]), map)
    } else if (strand == "-") {
      start <- genomeToTx(endRight(ga[read.idx]), map)
      end <- genomeToTx(startLeft(ga[read.idx]), map)
    }
    valid <- start < end & !is.na(start) & !is.na(end)
    reads[[i]] <- IRanges(start[valid], end[valid])
  }
  names(reads) <- names(grl)
  reads
}
matchReadsToFraglist <- function(reads, fraglist) {
  for (tx.idx in seq_along(fraglist)) {
    uniq.reads <- unique(reads[[tx.idx]])
    readtab <- table(match(reads[[tx.idx]], uniq.reads))
    fraglist[[tx.idx]]$count <- 0
    # this can be slow (up to 1 min) when fraglist has many millions of rows
    match.uniq <- match(uniq.reads, fraglist[[tx.idx]]$id)
    reads.in.fraglist <- !is.na(match.uniq)
    # uniq.reads <- uniq.reads[reads.in.fraglist] # not needed
    readtab <- readtab[reads.in.fraglist]
    # the map between {uniq.reads that are in fraglist} and {rows of fraglist}
    match.uniq.non.na <- match.uniq[!is.na(match.uniq)]
    fraglist[[tx.idx]][match.uniq.non.na,"count"] <- as.numeric(readtab)
  }
  fraglist
}

subsetAndWeightFraglist <- function(fraglist, downsample=20, minzero=2000) {
  unique.zero.list <- list()
  for (tx in seq_len(length(fraglist))) {
    # need to make a unique id for each fragment
    fraglist[[tx]]$genomic.id <- str_c(fraglist[[tx]]$gstart,"-",
                                       fraglist[[tx]]$gread1end,"-",
                                       fraglist[[tx]]$gread2start,"-",
                                       fraglist[[tx]]$gend)
    unique.zero.list[[tx]] <- fraglist[[tx]]$genomic.id[fraglist[[tx]]$count == 0]
  }
  unique.zero <- unique(do.call(c, unique.zero.list))
  sumzero <- length(unique.zero)
  numzero <- round(sumzero / downsample)
  numzero <- max(numzero, minzero)
  numzero <- min(numzero, sumzero)
  unique.ids <- sample(unique.zero, numzero, replace=FALSE)
  # once again, this time grab all fragments with positive count or in our list of zeros
  fraglist.sub <- list()
  for (tx in seq_len(length(fraglist))) {
    idx.pos <- which(fraglist[[tx]]$count > 0)
    idx.zero <- which(fraglist[[tx]]$genomic.id %in% unique.ids)
    fraglist.sub[[tx]] <- fraglist[[tx]][c(idx.pos,idx.zero),,drop=FALSE]
  }
  fragtypes <- do.call(rbind, fraglist.sub)
  # the zero weight is the number of unique zero count fragtypes in the original fraglist
  # divided by the current (down-sampled) number of zero count fragtypes
  zero.wt <- sumzero / numzero
  # return fragtypes, but with duplicate rows for selected fragments
  fragtypes$wts <- rep(1, nrow(fragtypes))
  fragtypes$wts[fragtypes$count == 0] <- zero.wt
  fragtypes
}

matchToDensity <- function(x, d) {
  idx <- cut(x, c(-Inf, d$x, Inf))
  pdf <- c(0, d$y)
  pdf.x <- pdf[ idx ] + 1e-6
  stopifnot(all(pdf.x > 0))
  pdf.x
}
getFPBP <- function(genes, bam.file) {
  gene.ranges <- unlist(range(genes))
  gene.lengths <- sum(width(genes))
  res <- countBam(bam.file, param=ScanBamParam(which=gene.ranges))
  # two records per fragment
  out <- (res$records / 2)/gene.lengths
  names(out) <- names(genes)
  out
}
getLogLambda <- function(fragtypes, models, modeltype, fitpar, bamname) {

  # knots and boundary knots need to come from the fitted parameters object
  # (just use the first sample, knots will be the same across samples)
  model.params <- fitpar[[1]][["model.params"]]
  stopifnot(!is.null(model.params))
  
  gc.knots <- model.params$gc.knots
  gc.bk <- model.params$gc.bk
  relpos.knots <- model.params$relpos.knots
  relpos.bk <- model.params$relpos.bk

  # which formula to use
  f <- models[[modeltype]]$formula

  offset <- numeric(nrow(fragtypes))
  if ("fraglen" %in% models[[modeltype]]$offset) {
    # message("-- fragment length correction")
    offset <- offset + fragtypes$logdfraglen
  }
  if ("vlmm" %in% models[[modeltype]]$offset) {
    # message("-- VLMM fragment start/end correction")
    offset <- offset + fragtypes$fivep.bias + fragtypes$threep.bias
  }
  if (!is.null(f)) {
    stopifnot(modeltype %in% names(fitpar[[bamname]][["coefs"]]))
    # assume: no intercept in formula
    # sparse.model.matrix produces different column names, so don't use
    # mm.big <- sparse.model.matrix(f, data=fragtypes)
    mm.big <- model.matrix(formula(f), data=fragtypes)
    beta <- fitpar[[bamname]][["coefs"]][[modeltype]]
    stopifnot(any(colnames(mm.big) %in% names(beta)))
    if (all(is.na(beta))) stop("all coefs are NA")
    beta[is.na(beta)] <- 0 # replace NA coefs with 0: these were not observed in the training data
    # this gets rid of the gene1, gene2 and Intercept terms
    beta <- beta[match(colnames(mm.big), names(beta))]
    # add offset
    log.lambda <- as.numeric(mm.big %*% beta) + offset
  } else {
    log.lambda <- offset
  }
  if (!all(is.finite(log.lambda))) stop("log.lambda is not finite")
  log.lambda
}
namesToModels <- function(model.names, fitpar) {
  # create the model.bank
  model.bank <- c(fitpar[[1]][["models"]],
                  list("null"=list(formula=NULL, offset=NULL),
                       "fraglen"=list(formula=NULL, offset="fraglen"),
                       "vlmm"=list(formula=NULL, offset="vlmm"),
                       "fraglen.vlmm"=list(formula=NULL, offset=c("fraglen","vlmm"))))
  models <- model.bank[model.names]
  # replace '+ gene' with '+ 0' in formula
  for (m in model.names) {
    if (!is.null(models[[m]]$formula)) {
      if (!grepl("\\+ gene$",models[[m]]$formula)) {
        stop("was expecting '+ gene' to be at the end of the formula string from fitpar")
      }
      models[[m]]$formula <- sub("\\+ gene$","\\+ 0",models[[m]]$formula)
    }
  }
  models
}
Bioconductor-mirror/alpine documentation built on June 1, 2017, 4:18 a.m.