R/corFinder.R

Defines functions getMatrixPair corFinder

Documented in corFinder

corFinder <-
  function  # Calculate pair-wise correlations between samples using the expr() slots of a list of two ExpressionSets.
### This function acts as a wrapper around ComBat (sva package) and
### cor(), to calculate pairwise correlations within one or between
### two ExpressionSets.
(eset.pair,
 ### a list of ExpressionSets, with two elements.  If the two
 ### elements are identical, return the correlation matrix for pairs
 ### of samples in the first element.  If not identical, return pairs
 ### between the two elements.
 separator = ":",
 ### Separator between dataset name and sample name.  Dataset names are
 ### added to sample names to keep track of dataset of origin.
 use.ComBat = TRUE,
 ### Use the sva::ComBat function for batch correction of the expr()
 ### data between the two datasets.
 ...
 ### Extra arguments passed to the cor() function. 
){
  if (!is(eset.pair, "list") || length(eset.pair) != 2)
    stop("eset.pair should be a list of two ExpressionSets")
  if (!.checkSameEsets(eset.pair)) {
    matrix.pair <- .getMatrixPair(eset.pair, use.ComBat)
    cormat <- cor(matrix.pair[[1]], matrix.pair[[2]], ...)
  } else{
    matrix.one <- exprs(eset.pair[[1]])
    cormat <- cor(matrix.one, ...)
    cormat[!upper.tri(cormat)] <- NA  ##NA for diagonal
  }
  return(cormat)
  ###   Returns a matrix of sample-wise Pearson Correlations.
}

.getMatrixPair <- function(eset.pair, use.ComBat) {
  genes.intersect <-
    intersect(featureNames(eset.pair[[1]]), featureNames(eset.pair[[2]]))
  for (i in 1:length(eset.pair)) {
    eset.pair[[i]] <- eset.pair[[i]][genes.intersect,]
  }
  ## Calculate correlation matrix for a pair of ExpressionSets:
  if (use.ComBat) {
    big.matrix <- do.call(cbind, lapply(eset.pair, exprs))
    if (any(!is.finite(big.matrix))) {
      all.finite <- apply(big.matrix, 1, function(x)
        all(is.finite(x)))
      big.matrix <- big.matrix[all.finite,]
      if (nrow(big.matrix) < 2)
        stop("Fewer than two genes without all finite values.")
    }
    batch.var <-
      lapply(names(eset.pair), function(x)
        rep(x, ncol(eset.pair[[x]])))
    batch.var <- do.call(c, batch.var)
    big.matrix.combat <-
      sva::ComBat(big.matrix, mod = model.matrix( ~ (rep(
        1, length(batch.var)
      ))), batch = batch.var)
    matrix.pair <-
      lapply(unique(batch.var), function(x)
        big.matrix.combat[, batch.var %in% x])
    names(matrix.pair) <- unique(batch.var)
  } else{
    matrix.pair <- lapply(eset.pair, exprs)
    names(matrix.pair) <- names(eset.pair)
  }
  return(matrix.pair)
}
Bioconductor-mirror/doppelgangR documentation built on June 1, 2017, 7:36 a.m.