Description Objects from the Class Slots Extends Methods Note Author(s) References See Also Examples

The split scale transformation class defines a transformation that has a logarithmic scale at high values and a linear scale at low values. The transition points are chosen so that the slope of the transformation is continuous at the transition points.

The split scale transformation is defined by the function

*f(parameter,r,maxValue,transitionChannel)= a*parameter+ b ~~~~parameter<=t*

* log_{10}(c*parameter)*\frac{r}{d} ~~~~parameter > t *

where,

*b=\frac{transitionChannel}{2}*

*d=\frac{2*log_{10}(e)*r}{transitionChannel} + log_{10}(maxValue) *

*t=10^{log_{10}t}*

*a= \frac{transitionChannel}{2*t}*

*log_{10}ct=\frac{(a*t+b)*d}{r}*

*c=10^{log_{10}ct}*

Objects can be created by calls to the constructor
`splitscale(parameters,r,maxValue,transitionChannel,transformationId)`

`.Data`

:Object of class

`"function"`

~~`r`

:Object of class

`"numeric"`

-a positive value indicating the range of the logarithmic part of the display`maxValue`

:Object of class

`"numeric"`

-a positive value indicating the maximum value the transformation is applied to`transitionChannel`

:Object of class

`"numeric"`

-non negative value that indicates where to split the linear vs. logarithmic transformation`parameters`

:Object of class

`"transformation"`

- flow parameter to be transformed`transformationId`

:Object of class

`"character"`

-unique ID to reference the transformation

Class `"singleParameterTransform"`

, directly.
Class `"transform"`

, by class "singleParameterTransform", distance 2.
Class `"transformation"`

, by class "singleParameterTransform", distance 3.
Class `"characterOrTransformation"`

, by class "singleParameterTransform", distance 4.

No methods defined with class "splitscale" in the signature.

The transformation object can be evaluated using the eval method by passing the data frame as an argument.The transformed parameters are returned as a matrix with a single column. (See example below)

Gopalakrishnan N, F.Hahne

Gating-ML Candidate Recommendation for Gating Description in Flow Cytometry

invsplitscale

1 2 3 | ```
dat <- read.FCS(system.file("extdata","0877408774.B08",package="flowCore"))
sp1<-splitscale("FSC-H",r=768,maxValue=10000,transitionChannel=256)
transOut<-eval(sp1)(exprs(dat))
``` |

Embedding an R snippet on your website

Add the following code to your website.

For more information on customizing the embed code, read Embedding Snippets.