DamondPancreas2019 | R Documentation |
These functions are provided for compatibility with older versions of ‘imcdatasets’ only, and will be defunct at the next release. This dataset consists of three data objects: single cell data, multichannel images and cell segmentation masks. The data was obtained by imaging mass cytometry of human pancreas sections from donors with type 1 diabetes.
DamondPancreas2019_sce(metadata = FALSE) DamondPancreas2019_images(metadata = FALSE) DamondPancreas2019_masks(metadata = FALSE)
metadata |
|
This is an Imaging Mass Cytometry (IMC) dataset from Damond et al. (2019), consisting of three data objects. Note: The following functions are deprecated and will be made defunct; use the replacements indicated below:
DamondPancreas2019_images -> DamondPancreas2019Data
contains a hundred 38-channel images in the form of a
CytoImageList class object.
DamondPancreas2019_masks -> DamondPancreas2019Data
contains the cell segmentation masks associated with the images, in the
form of a CytoImageList class object.
DamondPancreas2019_sce -> DamondPancreas2019Data
contains the single cell data extracted from the images using the cell
segmentation masks, as well as the associated metadata, in the form of a
SingleCellExperiment. This represents a total of 252,059
cells x 38 channels.
All data are downloaded from ExperimentHub and cached for local re-use.
Mapping between the three data objects is performed via variables located in
their metadata columns: mcols()
for the CytoImageList
objects and ColData()
for the SingleCellExperiment
object. Mapping at the image level can be performed with the
ImageName
or ImageNumber
variables. Mapping between cell
segmentation masks and single cell data is performed with the
CellNumber
variable, the values of which correspond to the intensity
values of the DamondPancreas2019_masks
object. For practical
examples, please refer to the "Accessing IMC datasets" vignette.
This dataset is a subset of the complete Damond et al. (2019) dataset comprising the data from three pancreas donors at different stages of type 1 diabetes (T1D). The three donors present clearly diverging characteristics in terms of cell type composition and cell-cell interactions, which makes this dataset ideal for benchmarking spatial and neighborhood analysis algorithms.
The assay
slot of the SingleCellExperiment object
contains two assays:
counts
contains mean ion counts per cell.
exprs
contains arsinh-transformed counts, with cofactor 1.
The marker-associated metadata, including antibody information and metal tags
are stored in the rowData
of the SingleCellExperiment
object.
The cell-associated metadata are stored in the colData
of the
SingleCellExperiment object. These metadata include cell types
(in colData(sce)$CellType
) and broader cell categories, such as
"immune" or "islet" cells (in colData(sce)$CellCat
). In addition,
for cells located inside pancreatic islets, the islet they belong to is
indicated in colData(sce)$ParentIslet
. For cells not located in
islets, the "ParentIslet" value is set to 0 but the spatially closest islet
can be identified with colData(sce)$ClosestIslet
.
The donor-associated metadata are also stored in the colData
of the
SingleCellExperiment object. For instance, the donors' IDs can
be retrieved with colData(sce)$case
and the donors' disease stage can
be obtained with colData(sce)$stage
.
The three donors present the following characteristics:
6126
is a non-diabetic donor, with large islets containing
many beta cells, severe infiltration of the exocrine pancreas with
myeloid cells but limited infiltration of islets.
6414
is a donor with recent T1D onset (shortly after
diagnosis) showing partial beta cell destruction and mild infiltration of
islets with T cells.
6180
is a donor with long-duration T1D (11 years after
diagnosis), showing near-total beta cell destruction and limited immune
cell infiltration in both the islets and the pancreas.
File sizes:
`images`
: size in memory = 7.4 Gb, size on disk = 1780 Mb.
`masks`
: size in memory = 200.0 Mb, size on disk = 8.6 Mb.
`sce`
: size in memory = 248.6 Mb, size on disk = 145 Mb.
Original source: Damond et al. (2019): https://doi.org/10.1016/j.cmet.2018.11.014
Original link to raw data, also containing the entire dataset: https://data.mendeley.com/datasets/cydmwsfztj/2
Returns a SingleCellExperiment
or
CytoImageList
object.
Nicolas Damond
Damond N et al. (2019). A Map of Human Type 1 Diabetes Progression by Imaging Mass Cytometry. Cell Metab 29(3), 755-768.
sce <- DamondPancreas2019Data(data_type = "sce") sce images <- DamondPancreas2019Data(data_type = "images") head(images) masks <- DamondPancreas2019Data(data_type = "masks") head(masks)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.