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1 Introduction

This guide provides a tour of package CAPIT , which inplements Sparse
CCA via Precision Adjusted Iterative Thresholding (CAPIT) procedure
proposed in Chen et al. This manual is composed of test-runs on basic
functions with simulated datasets. The main purpose is to reproduce
the results shown in simulation studies.

2 A probabilistic model of sparse CCA

Canonical correlation analysis (CCA) is a celebrated technique pro-
posed by Hotelling to find the linear combinations of two sets of random
variables with maximal correlation. Taking an example from integra-
tive cancer genomics studies, CCA can be used to study the relationship
between DNA methylation and gene expression. Let X ∈ Rp1 be a cen-
tered random vector representing p1 methylation probes and Y ∈ Rp2

be a centered random vector representing p2 genes. The correlation
between DNA methylation and gene expression is defined as

max
(a,b)

{
Cov(aTX, bTY ) : Var(aTX) = Var(bTY ) = 1

}
. (1)

The maximizer (θ, η) is the linear combinations of X and Y that are
maximally correlated. They are termed as the canonical directions. Un-
der high-dimensional settings where p1 and p2 are large, the canonical
directions (θ, η) can be sparse and only small subsets of methylation
probes and genes are significantly correlated. This gives rise to the
sparse CCA problem to be studied in this paper, the aim of which is
to find sparse canonical directions between two large sets of random
variables.

To study CCA from a theoretical point of view, we propose a prob-
abilistic model that naturally characterizes the optimization procedure.
Given the covariance structure, we present the following proposition.
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Proposition 2.1 When Σ12 is of rank 1, the solution (up to sign jointly)
of is (θ, η) if and only if the cross covariance between X and Y can be
written as

Σ12 = λΣ1θη
TΣ2,

where 0 < λ ≤ 1, θTΣ1θ = 1 and ηTΣ2η = 1. As a consequence, the
correlation between aTX and bTY are maximized by corr(θTX, ηTY ),
and λ is the canonical correlation between X and Y .

3 CAPIT algorithm

The CAPIT algorithm has two steps, first step is to estimate covari-
ance/precison matrix and the second step is iterative thresholding. For
the first step, we implement three approaches for sparse covariance ma-
trix estimation, hard/soft thresholding, tapering and toeplitz. We also
allow direct input of precision matrix from other methods. For the sec-
ond step, we implement an iterative thresholding algorithm, which se-
lects thresholding levels through cross validation. Pre-specified thresh-
olding levels are also allowed.

4 Test run on CAPIT() on simulated data

We simulate a scenario when the covariance matrices Σ1 and Σ2 are
sparse. More specifically, the covariance matrix Σ1 = Σ2 = (σij)1≤i,j≤p
takes the form

σij = ρ|i−j| with ρ = 0.2.

The canonical pair (θ, η) is generated by normalizing a vector taking
the same value at the coordinates (1, 6, 11, 16, 21) and zero elsewhere
such that θTΣ1θ = 1 and ηTΣ2η = 1. The canonical correlation λ is set
as 0.9. We generate the 2n× p data matrices X and Y jointly from the
model in the proposition.

> n <- 750*2

> p1 <- 200

> p2 <- 200

> s1 <- 5

> s2 <- 5

> rho <- 0.2

> Sigma1 <- matrix(0, ncol = p1, nrow = p1)

> for(i in 1:p1){

+ for(j in 1:p1){
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+ Sigma1[i, j] <- rho^(abs(i - j))

+ }

+ }

> Sigma2 <- matrix(0, ncol = p2, nrow = p2)

> for(i in 1:p2){

+ for(j in 1:p2){

+ Sigma2[i, j] <- rho^(abs(i - j))

+ }

+ }

> theta <- as.matrix(c(rep(c(1, 0, 0, 0, 0), s1), rep(0, p1-5*s1)))

> theta <- theta/as.numeric(sqrt(t(theta)%*%Sigma1%*%theta))

> eta <- as.matrix(c(rep(c(1, 0, 0, 0, 0), s2), rep(0, p2-5*s2)))

> eta <- eta/as.numeric(sqrt(t(eta)%*%Sigma2%*%eta))

> lambda <- 0.9

> sigma_cov <- rbind(cbind(Sigma1, lambda*Sigma1%*%theta%*%t(eta)%*%Sigma2),

+ cbind(lambda*Sigma2%*%eta%*%t(theta)%*%Sigma1, Sigma2))

> require(MASS)

> set.seed(100)

> Z <- mvrnorm(n, rep(0, p1+p2), sigma_cov)

> X <- Z[, 1:p1]

> Y <- Z[, (p1+1):(p1+p2)]

> v <- c(theta, eta)

The inputs of function scPLS include two matrices X and Y . We
split the data into two halves. We use the first half to estimate sparse
covariance matrix. The default method to estimate sparse covariance
matrix is hard thresholding. If set selection="soft", then soft thresh-
olding will be used instead. To select the thresholding level, we further
split the first part of the data into a 2 : 1 training set and tuning set.
We select the tuning parameter by minimizing the distance of the esti-
mated covariance from the training set and sample covariance matrix of
the tuning set in term of the Frobenius norm. The tuning parameter is
selected through a screening on 50 numbers in the interval of [0.01, 0.5].

The levels for iterative thresholding are obtained through cross val-
idation. Specifically, we split the second part of the data into a 2 : 1
training set and tuning set. We use the following natural levels: tij =

ct(‖Ω̂1‖ + ‖Ω̂2‖) and γi = cg(‖Ω̂1‖ + ‖Ω̂2‖)
√

log p
n

. The constants ct

and cg are selected by maximizing θ̂T Σ̂tra
12 η̂/(θ̂

T Σ̂tra
1 θ̂η̂T Σ̂tra

2 η̂)1/2, where

Σ̂tra
12 , Σ̂

tra
1 , Σ̂tra

2 are the sample cross covariance between X and Y , sam-
ple covariance of X and sample covariance of Y respectively using the
tuning set while (θ̂, η̂) is the estimated canonical direction pair using
the training set. Specifically, both ct and cg are selected through a
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screening on 7 numbers in the interval of [0.5, 3]. This interval can be
changed through modifying argument search.grid.

> library(CAPIT)

> u1 <- CAPIT(X, Y)

The output of CAPIT is a list, which further contains two list res and
resOLS. res contains alpha and beta, which returns canonical vectors
of X and Y estimated from the vanilla CAPIT algorithm, respectively.
res contains alpha and beta, which returns canonical vectors of X and
Y estimated from CAPIT algorithm with refinement using ordinary
least squares, respectively. We can check the estimation errors for (θ, η)
as measured by L(θ̂, θ) ∨ L(η̂, η). Here we use Frobenius loss.

> FLoss(unlist(u1[[1]]), v, p1) #CAPIT

[1] 0.08533437

> FLoss(unlist(u1[[2]]), v, p1) #CAPIT + refinement by OLS

[1] 0.04722038

Similarly, we can estimate sparse covariance matrix using“Tapering”
method or “Toeplitz” method. Both methods make stronger assump-
tions about the structure of covariance matrix. If the“Tapering”method
is used, the elements in the covariance matrix are assumed to decay as
they move away from the diagonal. For the tapering procedure, we
implemented the method proposed in Cai et al(2013). If the “Toeplitz”
method is used, the Toeplitz structure of the covariance matrix is as-
sumed. We implemented the method proposed in Cai et al(2012) to
estimate Toeplitz covariance matrix. Same as described previously, to
select the tuning parameters, we further split the first part of the data
into a 2 : 1 training set and tuning set. We select the tuning param-
eter by minimizing the distance of the estimated covariance from the
training set and sample covariance matrix of the tuning set in term of
the Frobenius norm. More specifically, the bandwidths in the Toeplitz
method and in the tapering method are selected through a screening on
numbers in the interval of (1, p). The decay rate in“tapering”algorithm
alpha is set to be 0.3 by default.

> u2 <- CAPIT(X, Y, method = "toeplitz")

> FLoss(unlist(u2[[1]]), v, p1) #CAPIT

[1] 0.09608247
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> FLoss(unlist(u2[[2]]), v, p1) #CAPIT + refinement by OLS

[1] 0.04706011

>

> u3 <- CAPIT(X, Y, method = "tapering")

> FLoss(unlist(u3[[1]]), v, p1) #CAPIT

[1] 0.1191908

> FLoss(unlist(u3[[2]]), v, p1) #CAPIT + refinement by OLS

[1] 0.04775202
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