
Graphs in the gRbase package

Søren Højsgaard

gRbase version 1.8-6.4 as of 2020-02-18

Loading required package: BiocGenerics

Loading required package: parallel

##

Attaching package: BiocGenerics

The following objects are masked from package:parallel:

##

clusterApply, clusterApplyLB, clusterCall, clusterEvalQ,

clusterExport, clusterMap, parApply, parCapply, parLapply,

parLapplyLB, parRapply, parSapply, parSapplyLB

The following objects are masked from package:stats:

##

IQR, mad, sd, var, xtabs

The following objects are masked from package:base:

##

Filter, Find, Map, Position, Reduce, anyDuplicated, append,

as.data.frame, basename, cbind, colnames, dirname, do.call,

duplicated, eval, evalq, get, grep, grepl, intersect, is.unsorted,

lapply, mapply, match, mget, order, paste, pmax, pmax.int, pmin,

pmin.int, rank, rbind, rownames, sapply, setdiff, sort, table,

tapply, union, unique, unsplit, which, which.max, which.min

Loading required package: grid

Contents

1 Introduction 2

2 Graphs 3

2.1 Undirected graphs . 3
2.2 Directed acyclic graphs (DAGs) . 4
2.3 Other types of graphs . 5
2.4 Graph properties . 6
2.5 Adjacency matrices . 6
2.6 Graph coercion . 7

1

3 Advanced graph operations 8

3.1 Moralization . 8
3.2 Topological sort - is a directed graph a DAG? 8
3.3 Getting the cliques of an undirected graph . 9
3.4 Perfect ordering and maximum cardinality search 10
3.5 Triangulation . 11
3.6 RIP ordering / junction tree . 11
3.7 Minimal triangulation and maximum prime subgraph decomposition 13

4 Time and space considerations 15

4.1 Time . 15
4.2 Space . 15

5 Graph queries 16

1 Introduction

The packages graph, RBGL, Rgraphviz and igraph are extremely useful tools for graph
operations, manipulation and layout. The gRbase package adds some additional tools to
these fine packages. The most important tools are:

1. Undirected and directed acyclic graphs can be specified using formulae or an adjacency
list using the functions ug() and dag().

This gives graphs represented in one of the following forms:1

• A graphNEL object (the default),

• A dense adjacency matrix (a “standard” matrix in R).

• A sparse adjacency matrix(a dgCMatrix from the Matrix package).

2. Some graph algorithms are implemented in gRbase. These can be applied to graphs
represented as graphNELs and matrices. The most important algorithms are:

• moralize(), (moralize a directed acyclic graph)

• mcs(),(maximum cardinality search for undirected graph)

• triangulate(), (triangulate undirected graph)

• rip(), (RIP ordering of cliques of triangulated undirected graph)

• jTree() (Create junction tree from triangulated undirected graph).

• get cliques(), (get the (maximal) cliques of an undirected graph)

• minimal triang() (minimal triangulation of undirected graph)

• mpd() (maximal prime subgraph decomposition of undirected graph)

The general scheme is the following: For example, for maximum cardinality search there
is a mcs() function and a mcs.default() method performs maximum cardinality search
for graphs represented as graphNELs and as sparse and dense matrices. The workhorse
is the function mcsMAT() which takes a sparse or a dense matrix as input.

1There is a fourth form: igraph objects. These, however, will probably not be supported in the future.

2

2 Graphs

Undirected graphs can be created by the ug() function and directed acyclic graphs (DAGs)
by the dag() function. The graphs can be specified either using formulae or a list of vectors;
see examples below.

2.1 Undirected graphs

An undirected graph is created by the ug() function. The following specifications are equiv-
alent (notice that “:” and “*” can be used interchangably):

uG11 <- ug(~a:b + b:c:d)

uG12 <- ug(c("a", "b"), c("b", "c", "d"))

uG13 <- ug(list(c("a", "b"), c("b", "c", "d")))

Default is to return a graphNEL object (for which there is a plot method):

uG11

A graphNEL graph with undirected edges

Number of Nodes = 4

Number of Edges = 4

nodes(uG11)

[1] "a" "b" "c" "d"

str(edges(uG11))

List of 4

$ a: chr "b"

$ b: chr [1:3] "c" "d" "a"

$ c: chr [1:2] "d" "b"

$ d: chr [1:2] "b" "c"

plot(uG11)

3

a

b

c

d

Matrix representations are obtained with:

uG11m <- ug(~a:b + b:c:d, result="matrix")

uG11M <- ug(~a:b + b:c:d, result="dgCMatrix")

2.2 Directed acyclic graphs (DAGs)

A directed acyclic graph is created by the dag() function. The following specifications are
equivalent (notice that “:” and “*” can be used interchangably):

daG11 <- dag(~a:b + b:c:d)

daG12 <- dag(c("a", "b"), c("b", "c", "d"))

daG13 <- dag(list(c("a", "b"), c("b", "c", "d")))

The syntax rules are that ~a (and "a") means that “a” has no parents while ~c:a:b (and
c("c","a","b")) means that “c” has parents “a” and “b”.

daG11

A graphNEL graph with directed edges

Number of Nodes = 4

Number of Edges = 3

nodes(daG11)

[1] "a" "b" "c" "d"

str(edges(daG11))

List of 4

$ a: chr(0)

$ b: chr "a"

$ c: chr "b"

$ d: chr "b"

plot(daG11)

4

a

b

c d

Matrix representations are obtained with:

daG11m <- dag(~a:b + b:c:d, result="matrix")

daG11M <- dag(~a:b + b:c:d, result="dgCMatrix")

2.3 Other types of graphs

The dag() function allows for creation of directed graphs which are not DAGs. Consider

d1.bi <- dag(~a:b + b:a)

edgemode(d1.bi)

[1] "directed"

str(edges(d1.bi))

List of 2

$ a: chr "b"

$ b: chr "a"

This graph is not DAG because there is an edge from a to b and from b to a; i.e., the edge is
bidirected. Likewise we may create:

d2.cyc <- dag(~a:b + b:c + c:a)

par(mfrow=c(1,2)); plot(d1.bi); plot(d2.cyc)

5

a

b

a

b

c

Notice: Supplying dag() with forceCheck=TRUE forces dag() to check if the graph is acyclic:

dag(~a:b + b:c + c:a, forceCheck=TRUE)

2.4 Graph properties

2.5 Adjacency matrices

Graphs in the graph package (i.e. graphNEL objects) are represented as adjacency lists.
However, there is a substantial overhead (in terms of computing time) for such objects.
The graph algorithms in gRbase are mostly based on a representation as sparse adjacency
matrices (which leads to faster code).

A non-zero value at entry (i, j) in an adjacency matrix A for a graph means that there is
an edge from i to j. If also (j, i) is non-zero then there is also an edge from j to i. In this
case we may think of a bidirected edge between i and j or we may think of the edge as being
undirected. We do not distinguish between undirected and bidirected edges in the gRbase

package. Put differently, in gRbase, edges are either directed or undirected/bidirected. In
contrast, with graphNEL objects one can work with three types of edges: undirected, directed
and bidirected edges.

• is ug() checks if the adjacency matrix is symmetric (If applied to a graphNEL, the
adjacency matrix is created and checked for symmetry.)

• is tug() checks if the graph is undirected and triangulated (also called chordal) by
checking if the adjacency matrix is symmetric and the vertices can be given a perfect
ordering using maximum cardinality seach.

• is dg() checks if a graph is directed, i.e., that there are no undirected edges. This is
done by computing the elementwise product of A and the transpose of A; if there are
no non–zero entries in this product then the graph is directed.

• is dag() will return TRUE if all edges are directed and if there are no cycles in the graph.
(This is checked by checking if the vertices in the graph can be given a topological
ordering which is based on identifying an undirected edge with a bidrected edge).

6

Notice a special case, namely if the graph has no edges at all (such that the adjacency matrix
consists only of zeros). Such a graph is both undirected, triangulated, directed and directed
acyclic.

Consider these examples (where isDirected() is a method from the graph package):

@

properties <- function(x){
c(is_ug=is_ug(x), is_tug=is_tug(x), is_dg=is_dg(x), is_dag=is_dag(x),

isD=graph::isDirected(x))

}
properties(uG11)

is_ug is_tug is_dg is_dag isD

TRUE TRUE FALSE FALSE FALSE

properties(daG11)

is_ug is_tug is_dg is_dag isD

FALSE FALSE TRUE TRUE TRUE

properties(d1.bi)

is_ug is_tug is_dg is_dag isD

TRUE TRUE FALSE FALSE TRUE

properties(d2.cyc)

is_ug is_tug is_dg is_dag isD

FALSE FALSE TRUE FALSE TRUE

2.6 Graph coercion

Graphs can be coerced between differente representations using as(); for example:

mat <- as(uG11, "matrix")

Mat <- as(mat, "dgCMatrix")

NEL <- as(Mat, "graphNEL")

7

3 Advanced graph operations

3.1 Moralization

A moralized directed acyclic graph is obtained with

daG11.mor <- moralize(daG11)

par(mfrow=c(1,2)); plot(daG11); plot(daG11.mor)

a

b

c d a

b

c

d

We can work with a matrix representation too. Default is that the output representation is
the same as the input representation, but this can be changed:

moralize(daG11m, result="dgCMatrix")

4 x 4 sparse Matrix of class "dgCMatrix"

a b c d

a . 1 . .

b 1 . 1 1

c . 1 . 1

d . 1 1 .

3.2 Topological sort - is a directed graph a DAG?

A topological ordering of a directed graph is a linear ordering of its vertices such that, for
every edge (u → v), u comes before v in the ordering. A topological ordering is possible if
and only if the graph has no directed cycles, that is, if it is a directed acyclic graph (DAG).
Any DAG has at least one topological ordering.

topo_sort(daG11)

[1] "c" "d" "b" "a"

topo_sort(daG11m)

8

[1] "c" "d" "b" "a"

topo_sort(daG11M)

[1] "c" "d" "b" "a"

The following graph has a cycle and hence a topological ordering can not be made:

topo_sort(dag(~a:b + b:c + c:a))

character(0)

Likewise for an undirected graph (recall that we regard an undirected edge as a bidirected
edge):

topo_sort(ug(~a:b))

character(0)

3.3 Getting the cliques of an undirected graph

In graph theory, a clique is often a complete subset of a graph. A maximal clique is a clique
which can not be enlarged. In statistics (and that is the convention we follow here) a clique
is usually understood to be a maximal clique. Finding the cliques of a general graph is an
NP–complete problem. Finding the cliques of triangulated graph is linear in the number of
cliques.

str(get_cliques(uG11))

List of 2

$: chr [1:3] "b" "c" "d"

$: chr [1:2] "b" "a"

str(get_cliques(uG11m))

List of 2

$: chr [1:3] "b" "c" "d"

$: chr [1:2] "b" "a"

str(get_cliques(uG11M))

List of 2

$: chr [1:3] "b" "c" "d"

$: chr [1:2] "b" "a"

9

For graphNEL objects one may also use the maxClique() function inRBGL, but get cliques()

applies also to matrices and it is substantially faster.

3.4 Perfect ordering and maximum cardinality search

An undirected graph is triangulated (or chordal) if it has no cycles of length ≥ 4 without
a chord. This is equivalent to that the vertices can be given a perfect ordering. A perfect
ordering (if it exists) can be obtained with Maximum Cardinality Search. If character(0) is
returned the graph is not triangulated. Otherwise a perfect ordering of the nodes is returned.

mcs(uG11)

[1] "a" "b" "c" "d"

mcs(uG11m)

[1] "a" "b" "c" "d"

mcs(uG11M)

[1] "a" "b" "c" "d"

In some applications it is convenient to retain control over the ordering (if it exists). For
example:

mcs(uG11, root=c("a","c"))

[1] "a" "b" "c" "d"

The desired ordering (specified by root) is followed as far as possible (here only to the first
variable "a"). Notice the output when applying mcs() to a directed graph:2

mcs(daG11)

character(0)

mcs(as(daG11, "matrix"))

character(0)

2Perhaps better to signal an error.

10

3.5 Triangulation

Any undirected graph can be triangulated by adding edges to the graph, so called fill-ins:

uG <- ug(~a:b:c + c:d + d:e + a:e + f:g)

mcs(uG)

character(0)

(tuG <- triangulate(uG))

A graphNEL graph with undirected edges

Number of Nodes = 7

Number of Edges = 8

mcs(tuG)

[1] "a" "b" "c" "e" "d" "f" "g"

(tuG <- triangulate(uG))

A graphNEL graph with undirected edges

Number of Nodes = 7

Number of Edges = 8

par(mfrow=c(1,2)); plot(uG); plot(tuG)

●a

●b
●c

●d
●e

●f

●g
●a

●b
●c

●d
●e

●f

●g

3.6 RIP ordering / junction tree

A RIP–ordering of the cliques of a triangulated graph can be obtained as:

11

rp <- rip(tuG); rp

cliques

1 : c a b

2 : c a e

3 : c d e

4 : f g

separators

1 :

2 : c a

3 : c e

4 :

parents

1 : 0

2 : 1

3 : 2

4 : 0

plot(rp)

1

2

3

4

There is more information in a RIP-object:

names(rp)

[1] "nodes" "cliques" "separators" "parents" "children"

[6] "host" "nLevels" "childList"

rp$nodes

[1] "a" "b" "c" "e" "d" "f" "g"

rp$host

[1] 2 1 3 3 3 4 4

12

rp$children

[1] 2 3 NA NA

str(rp$separators)

List of 4

$: chr(0)

$: chr [1:2] "c" "a"

$: chr [1:2] "c" "e"

$: chr(0)

The host component tells for each node, a clique in which the node can be found

The function jTree takes an undirected graph as input; triangulates it if it is not already so
and then finds a RIP–ordering.

3.7 Minimal triangulation and maximum prime subgraph decomposition

A triangulation is minimal if no fill-ins can be removed without breaking the property that
the graph is triangulated. (A related concept is the minimum triangulation, which is the the
graph with the smallest number of fill-ins. The minimum triangulation is unique, but finding
the minimum triangulation is NP-hard.)

For example, this graph has two 4–cycles:

g1 <- ug(~a:b + b:c + c:d + d:e + e:f + a:f + b:e)

g1mt <- minimal_triang(g1) # A minimal triangulation

par(mfrow = c(1,2)); plot(g1); plot(g1mt)

●a

●b

●c

●d

●e

●f

●a

●b

●c

●d

●e

●f

The following graph is also a triangulation of g1, and from this a minimal triangulation can
be obtained:

13

g2 <- ug(~a:b:e:f + b:c:d:e)

g1mt2 <- minimal_triang(g1, tobject=g2)

par(mfrow = c(1,2)); plot(g2); plot(g1mt2)

●a

●b
●e

●f ●c

●d

●a

●b
●e

●f●c

●d

The junction tree of a maximum prime subgraph decomposition is obtained with:

mm <- mpd(g1); mm

cliques

1 : b a f e

2 : b d e c

separators

1 :

2 : b e

parents

1 : 0

2 : 1

par(mfrow = c(1,2))

plot(subGraph(mm$cliques[[1]], g1))

plot(subGraph(mm$cliques[[2]], g1))

b

a

f

e

b d

e c

14

4 Time and space considerations

4.1 Time

It is worth noticing that working with graphs representated as graphNEL objects can be
somewhat slower than working with graphs represented as adjacency matrices. Consider
finding the cliques of an undirected graph represented as a graphNEL object or as a matrix:

if(require(microbenchmark)){
microbenchmark(

RBGL::maxClique(uG11),

get_cliques(uG11),

get_cliques(uG11m),

get_cliques(uG11M),

times=10) }

Loading required package: microbenchmark

Unit: microseconds

expr min lq mean median uq max neval cld

RBGL::maxClique(uG11) 116.54 125.24 150.52 130.50 135.75 345.32 10 c

get_cliques(uG11) 74.77 77.75 91.26 83.71 87.50 172.11 10 b

get_cliques(uG11m) 19.97 22.34 24.80 23.45 25.25 35.80 10 a

get_cliques(uG11M) 28.66 31.58 36.59 35.46 37.71 56.75 10 a

4.2 Space

The graphNEL representation is – at least – in principle more economic in terms of space
requirements than the adjacency matrix representation (because the adjacency matrix repre-
sentation uses a 0 to represent a “missing edge”. The sparse matrix representation is clearly
only superior to the standard matrix representation if the graph is sparse:

V <- 1:300

M <- 1:10

Sparse graph

##

g1 <- randomGraph(V, M, 0.05)

length(edgeList(g1))

[1] 1332

s <- c(NEL=object.size(g1),

dense=object.size(as(g1, "matrix")),

sparse=object.size(as(g1, "dgCMatrix")))

s / max(s)

15

NEL dense sparse

1.00000 0.60536 0.05837

More dense graph

##

g1 <- randomGraph(V, M, 0.5)

length(edgeList(g1))

[1] 42044

s <- c(NEL=object.size(g1),

dense=object.size(as(g1, "matrix")),

sparse=object.size(as(g1, "dgCMatrix")))

s / max(s)

NEL dense sparse

1.00000 0.02161 0.02990

5 Graph queries

The graph and RBGL packages implement various graph operations for graphNEL objects.
See the documentation for these packages. The gRbase implements a few additional func-
tions, see Section 1. An additional function in gRbase for graph operations is querygraph().
This function is intended as a wrapper for the various graph operations available in gRbase,
graph and RBGL. There are two main virtues of querygraph(): 1) querygraph() operates
on any of the three graph representations described above3 and 2) querygraph() provides a
unified interface to the graph operations. The general syntax is

args(querygraph)

function (object, op, set = NULL, set2 = NULL, set3 = NULL)

NULL

3Actually not quite yet, but it will be so in the future.

16

