knitr::opts_chunk$set( collapse = TRUE, comment = "#>", fig.path = "man/figures", out.width = "100%" )
TME infiltration patterns were determined and systematically correlated with TME cell phenotypes, genomic traits, and patient clinicopathological features to establish the TMEscore: Tumor Microenvironment Characterization in Gastric Cancer Identifies Prognostic and Immunotherapeutically Relevant Gene Signatures.
TMEscore is an R package to estimate tumor microenvironment score. Provides functionality to calculate Tumor microenvironment (TME) score using PCA or z-score.
The package is not yet on CRAN. You can install from Github:
# install.packages("devtools") if (!requireNamespace("TMEscore", quietly = TRUE)) devtools::install_github("DongqiangZeng0808/TMEscore")
Main documentation is on the tmescore
function in the package:
library('TMEscore') library("ggplot2") library("patchwork")
Example
tmescore<-tmescore(eset = eset_stad, #expression data pdata = pdata_stad, #phenotype data method = "PCA", #default classify = T) #if true, survival data must be provided in pdata head(tmescore)
#remove observation with missing value tmescore<-tmescore[!is.na(tmescore$subtype),] p<-ggplot(tmescore,aes(x= subtype,y=TMEscore,fill=subtype))+ geom_boxplot(notch = F,outlier.shape = 1,outlier.size = 0.5)+ scale_fill_manual(values= c('#374E55FF', '#DF8F44FF', '#00A1D5FF', '#B24745FF')) comparision<-combn(unique(as.character(tmescore$subtype)), 2, simplify=F) p1<-p+theme_light()+ stat_compare_means(comparisons = comparision,size=2.5)+ stat_compare_means(size=2.5) # survival analysis colnames(tmescore)[which(colnames(tmescore)=="TMEscore_binary")]<-"score" fit<- survfit(Surv(time, status) ~ score, data = tmescore) p2<-ggsurvplot(fit, conf.int = FALSE, palette = c('#374E55FF', '#DF8F44FF'), risk.table = TRUE, pval = TRUE, risk.table.col = "strata") p2<-list(p2) p2 <- arrange_ggsurvplots(p2, print = FALSE, ncol = 1, nrow = 1) # print plots (p1|p2)+plot_layout(ncol = 2, widths = c(1,2))
If you use TMEscore in published research, please cite:
Tumor microenvironment evaluation promotes precise checkpoint immunotherapy of advanced gastric cancer. Journal for ImmunoTherapy of Cancer, 2021, 9(8), e002467. DOI: 10.1136/jitc-2021-002467, PMID: 34376552
Tumor microenvironment characterization in gastric cancer identifies prognostic and imunotherapeutically relevant gene signatures. Cancer Immunology Research, 2019, 7(5), 737-750. DOI: 10.1158/2326-6066.CIR-18-0436, PMID: 30842092
E-mail any questions to dongqiangzeng0808@gmail.com or interlaken0808@163.com
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.