class: inverse background-image: url(https://images.unsplash.com/photo-1572291720677-d8d28ac52a5b?ixid=MXwxMjA3fDB8MHxwaG90by1wYWdlfHx8fGVufDB8fHw%3D&ixlib=rb-1.2.1&auto=format&fit=crop&w=1556&q=80) background-size: cover
# This is the recommended set up for flipbooks # you might think about setting cache to TRUE as you gain practice --- building flipbooks from scratch can be time consuming knitr::opts_chunk$set(fig.width = 8, message = FALSE, warning = FALSE, comment = "", cache = F) library(flipbookr) library(tidyverse)
class: inverse, center, middle
r chunk_reveal("vizthemean1d", break_type = "user")
library(tidyverse) library(ggxmean) palmerpenguins::penguins %>% drop_na() %>% ggplot() + aes(x = bill_length_mm) + geom_rug(alpha = .3) + geom_histogram(alpha = .4) + #BREAK geom_x_mean() + #BREAK aes(color = species) + #BREAK aes(fill = species) + #BREAK facet_grid(rows = vars(species)) + #BREAK facet_grid(rows = vars(species, sex)) + #BREAK geom_rug(alpha = .6) + #BREAK geom_x_quantile(quantile = .5, linetype = "dashed") + #BREAK geom_x_percentile(percentile = 75, color = "goldenrod") + #BREAK geom_x_median(color = "black") + #BREAK geom_x_quantile(quantile = .25, linetype = "dashed") + #BREAK geom_boxplot(y = 0, width = 3, fill = "white", color = "black") #BREAK
class: inverse, center, middle
r chunk_reveal("vizthemean2d", break_type = "user")
library(ggxmean) palmerpenguins::penguins %>% drop_na() %>% ggplot() + aes(x = bill_length_mm) + aes(y = flipper_length_mm) + geom_point() + #BREAK geom_x_mean() + #BREAK geom_y_mean() + #BREAK aes(color = species) + #BREAK facet_wrap(facets = vars(species)) + #BREAK facet_grid(cols = vars(species), rows = vars(sex)) #BREAK
r chunk_reveal("ttest")
set.seed(1456) ggplot(starwars %>% sample_n(30)) + aes(x = height) + geom_rug() + geom_dotplot() + geom_x_mean(linetype = "dashed") + ggxmean:::geom_tdist( height = 50, alpha = .5 ) + ggxmean:::geom_ttestconf( size = 2, conf.level = .9, y = -.05 )
r chunk_reveal("multittest", break_type = 20)
ggplot(tibble(height = runif(20))) + aes(x = height) + geom_rug() + geom_x_mean( linetype = "dashed", color = "mediumvioletred", size = 1.5 ) + ggxmean:::geom_tdist( height = 1, alpha = .5, fill = "mediumvioletred" ) + ggxmean:::geom_ttestconf( size = 2, color = "mediumvioletred", alpha = .75, y = -.01, conf.level = .90) + scale_x_continuous(limits = c(0, 1)) + scale_y_continuous(limits = c(0, 1.7))
class: inverse, center, middle
r chunk_reveal("ols", break_type = "user", widths = c(1,1))
palmerpenguins::penguins %>% filter(species == "Chinstrap" & sex == "male") %>% ggplot() + aes(x = flipper_length_mm) + aes(y = body_mass_g) + geom_point() + #BREAK geom_lm() + #BREAK geom_rug(aes(y = NULL)) + #BREAK geom_x_line(alpha = .2, linetype = "dotted") + #BREAK geom_lm_fitted(color = "blue", size = 2.5) + #BREAK geom_lm_residuals(color = "tomato3") + #BREAK geom_y_mean() + #BREAK geom_x_mean() + #BREAK geom_xy_means(size = 3, color = "lightpink4") + #BREAK geom_lm_formula() + #BREAK # plug and chug to calculate an # expected value of y for a given x annotate(geom = "point", x = 208, y = 40.3 * 208 - 4110, size = 5, shape = "diamond") + #BREAK ggxmean:::geom_lm_run(color = "violetred4") + #BREAK ggxmean:::geom_lm_rise(color = "violetred4") + #BREAK ggxmean:::geom_lm_run10(color = "chartreuse3") + #BREAK ggxmean:::geom_lm_rise10(color = "chartreuse3") + #BREAK ggxmean:::geom_lm_predictx(alpha = .2) + #BREAK ggxmean:::geom_lm_predicty(alpha = .2) + #BREAK ggxmean:::geom_lm_intercept() + #BREAK ggxmean:::geom_lm_interceptcoords(hjust = 0) #BREAK
class: inverse
--
--
work on it if it looks interesting.
--
I think there's a sufficient correlation between interest and importance.
--
- David Blackwell
r chunk_reveal("vizthecorrelation", break_type = "user")
library(ggxmean) palmerpenguins::penguins %>% mutate(id = row_number()) %>% ggplot() + aes(x = bill_length_mm) + aes(y = flipper_length_mm) + geom_point() + geom_x_mean() + #BREAK geom_y_mean() + #BREAK geom_y_line(alpha = .02) + #BREAK geom_x_line(alpha = .02) + #BREAK ggxmean:::geom_xdiff() + #BREAK ggxmean:::geom_ydiff() + #BREAK ggxmean:::geom_diffsmultiplied() + #BREAK ggxmean:::geom_x1sd() + #BREAK ggxmean:::geom_y1sd() + #BREAK ggxmean:::geom_rsq1(fill = "blue") + #BREAK ggxmean:::geom_xy1sd(fill = "green") + #BREAK ggxmean:::geom_xydiffsmean(alpha = 1, fill = "plum3") + ggxmean:::geom_corrlabel() + #BREAK geom_lm() + #BREAK facet_wrap(facet = vars(species)) #BREAK
r chunk_reveal("suprising")
cars %>% ggplot() + aes(x = speed) + geom_rug() + geom_x_mean() + geom_x_mean_label() + aes(y = dist) + geom_y_mean() + geom_y_mean_label() + geom_point()
```{css, eval = TRUE, echo = FALSE} .remark-code{line-height: 1.5; font-size: 80%}
@media print { .has-continuation { display: block; } }
code.r.hljs.remark-code{ position: relative; overflow-x: hidden; }
code.r.hljs.remark-code:hover{ overflow-x:visible; width: 500px; border-style: solid; } ```
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.