#### confint #####
StatOlspredint <- ggplot2::ggproto("StatOlspredint",
ggplot2::Stat,
compute_group = function(data, scales, num_breaks = 100) {
model <- lm(y ~ x, data = data)
new_x_df <- seq(min(data$x), max(data$x),
length.out = num_breaks) %>%
data.frame(x = .)
predict(model,
newdata = new_x_df,
interval = "prediction",
level = .95
) ->
predict_df
data.frame(x = new_x_df$x,
xend = new_x_df$x,
xmin = new_x_df$x,
xmax = new_x_df$x,
y = predict_df[,2],
yend = predict_df[,3],
ymin = predict_df[,2],
ymax = predict_df[,3],
alpha = .3)
},
required_aes = c("x", "y")
)
#' Drawing prediction interval for OLS linear model
#'
#' @param mapping
#' @param data
#' @param position
#' @param na.rm
#' @param show.legend
#' @param inherit.aes
#' @param ...
#'
#' @return
#' @export
#'
#' @examples
#' library(ggplot2)
#' ggplot(cars) + aes(x = speed, y = dist) +
#' geom_point() + geom_lm() + geom_lm_pred_int()
geom_lm_pred_int <- function(mapping = NULL, data = NULL,
position = "identity", na.rm = FALSE, show.legend = NA,
inherit.aes = TRUE, ...) {
ggplot2::layer(
stat = StatOlspredint, geom = ggplot2::GeomRibbon, data = data, mapping = mapping,
position = position, show.legend = show.legend, inherit.aes = inherit.aes,
params = list(na.rm = na.rm, ...)
)
}
#' Drawing prediction interval for OLS linear model as segments
#'
#' @param mapping
#' @param data
#' @param position
#' @param na.rm
#' @param show.legend
#' @param inherit.aes
#' @param ...
#'
#' @return
#' @export
#'
#' @examples
#' library(ggplot2)
#' ggplot(cars) + aes(x = speed, y = dist) +
#' geom_point() + geom_lm() + geom_lm_pred_int_segments(num_breaks = 100)
geom_lm_pred_int_segments <- function(mapping = NULL, data = NULL,
position = "identity", na.rm = FALSE, show.legend = NA,
inherit.aes = TRUE, ...) {
ggplot2::layer(
stat = StatOlspredint, geom = ggplot2::GeomSegment, data = data, mapping = mapping,
position = position, show.legend = show.legend, inherit.aes = inherit.aes,
params = list(na.rm = na.rm, ...)
)
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.