
Working with RVPedigree

Lennart C. Karssen, Karim Oualkacha & Celia M.T. Greenwood

December 3, 2015

Contents

1 Introduction 1

2 Loading the input data 3
2.1 Genotype data . 4
2.2 Loading or creating a relationship matrix 4

2.2.1 A relationship matrix from data in Plink ped format . . . 5
2.2.2 A relationship matrix from data in Plink bed format . . . 5
2.2.3 A relationship matrix from data in GenABEL gwaa-data

format . 6

3 Analysing a single genomic region 7
3.1 Using ASKAT . 7
3.2 Using ASKAT-Normalized . 8
3.3 Using VC-C1 . 8
3.4 Using VC-C2 . 9
3.5 Using VC-C3 . 10

4 Using RVPedigree for genome-wide analysis 11

5 Using multiple CPU cores for parallel analysis 14
5.1 Parallel permutations to obtain p-values 14
5.2 Parallel analysis of genomic regions 15

6 Specifying custom genotype weights 16

7 Notes on using ShapeIT to estimate haplotypes 16

1 Introduction

RVPedigree is an R package that contains methods to perform autosomal rare
variant association analyses with a quantitative phenotype, specifically for the
situation when there are related individuals or families in the data. There are
5 variants of such a test included in the package, and in particular RVPedigree

1

includes methods that test for association with non-normally distributed pheno-
types; improved power is possible by appropriate modelling of the distributions.

The main user-visible functions of the package are listed below. The RVPedigree()

function is the main function that can be used to analyse multiple genomic re-
gions in one go. The *.region() functions can be used to run a given method
on a single genomic region specified by its start and end base pair position.

• ASKAT.region(): ASKAT [?] performs a test of association when the phe-
notype (specifically, the residuals after adjusting the phenotype for fixed
covariates) follows a normal distribution (see § 3.1).

• NormalizedASKAT.region(): For ASKAT-normalized, ASKAT is implemented
for th rank-normalized residuals of the phenotype, after adjusting for co-
variates (see § 3.2).

• VCC1.region(), VCC2.region() and VCC3.region() are copula-based tests
of association for non-normal traits, using three different p-value approx-
imations. In Ref. [1], these three tests are known as VC-C1, VC-C2 and
VC-C3.

– VC-C1 estimates the p-value with an asymptotic approximation,
which has a small liberal bias for small p-values (see § 3.3),

– VC-C2 uses permutation of founder haplotypes to estimate the p-
values (see § 3.4),

– VC-C3 generates the empirical distribution of the test statistics un-
der the null, and uses this to estimate the p-values (see § 3.5).

• RVPedigree(): main function that can be used to run a one of the methods
above on one or more genomic regions (see § 4).

If the phenotype is not normal, VC-C1 is the computationally fastest method,
and these p-values can be used to triage which regions of the genome should be
re-analyzed with VC-C2 or VC-C3 to obtain more accurate significance esti-
mates. Both of these two methods have accurate type 1 errors, but the last one
(VC-C3) is much faster.

In order to run any of the examples below, the package needs to be loaded
first, of course:

library(RVPedigree)

Loading required package: foreach

Loading required package: doParallel

Loading required package: iterators

Loading required package: parallel

2

2 Loading the input data

Before running an association test with one (or more) of the methods, the
following data needs to be present1:

• Phenotype data; phenotype data should be present in the form of an R
vector (one value for each individual). It is up to you (as user) to create
the vector, for example by reading it from a CSV file using R’s read.csv()

function or like this:

pheno.file <- system.file("extdata", "pheno.dat",

package="RVPedigree")

pheno.table <- read.table(pheno.file, header=FALSE)

dim(pheno.table)

[1] 600 1

pheno <- pheno.table[, 1]

head(pheno)

[1] 1.2506154 2.9575878 5.2475735 -0.6855776 1.3271224 2.7389056

• Covariate data; this data should be present in the form of a matrix. Like
the phenotype data it us up to you to load this data. For example:

covar.file <- system.file("extdata", "covariates.dat",

package="RVPedigree")

covar <- as.matrix(read.table(covar.file, header=FALSE))

dim(covar)

[1] 600 3

• Pedigree data; data on familial relationships needs to be available in Link-
age format. This format is also used by Plink (which is used to read
the genotype data, see below) and consists of four columns (separated by
spaces) for each individual in the pedigree:

– Family or pedigree ID

– Individual ID

– Father ID

– Mother ID

1The example code in this vignette uses files that are included in the RVPedigree package,
that is why the package argument to the system.file() function is used.

3

See e.g. the Plink website for more details.

• Genotype data; genotype data can be loaded from Plink files, see §2.1.

• Relationship matrix ; each of the methods requires a (symmetric) relation-
ship matrix (2 × the kinship matrix). The function GetRelMatrix can be
used to create such a matrix if you do not have one. See §2.2 for details.

2.1 Genotype data

For genotype data RVPedigree accepts Plink input files. These can be in .ped

or .bed format. The main RVPedigree functions have two keywords for loading
genotype data: type, which specifies the type of file (values are ped or bed) and
filename, which is the full filename (including path if necessary) to the main
plink file (file.ped or file.bed) containing the genotype data (as well as the
pedigree data).

Some other formats for handling genotype data can interface well with Plink.
For example, for users of GenABEL, data can be output from GenABEL format
to Plink .ped or .bed format using the function export.plink() from GenABEL
2.

It is important to note that for the VC-C2 and VC-C3 methods, the geno-
type data in a region are assumed to be phased, so that the first alleles at all
variants are assumed to lie on the same chromosome, and likewise for the second
alleles. More on this topic can be found in sections ??.

RVPedigree is designed for autosomal genotypes and should not be used for
X or Y chromosome analyses.

2.2 Loading or creating a relationship matrix

The relationship matrix (twice the kinship matrix) can be calculated in two
ways: by using pedigree data or by using genomic data. The option datatype of
the GetRelMatrix() function is used to tell the GetRelMatrix() function which
method to use. This can be either datatype="pedigree" or datatype="genomic".
Obviously if you don’t have (full) pedigree data only the "genomic" option makes
sense.

Depending on the file format in which you have stored your pedigree/geno-
types, you need to tell GetRelMatrix how to read the data. If your data is in
Plink .ped or .bed format, you need to have the snpStats package installed3.

For now we assume you have your kinship matrix already stored in an Rdata
file, then loading it and converting it to a relationship matrix Φ is easy:

kinship.file <- system.file("extdata", "kinmat.Rdata",

package="RVPedigree")

load(kinship.file)

2See http://www.genabel.org/GenABEL/export.plink.html
3See http://www.bioconductor.org/packages/release/bioc/html/snpStats.html.

4

http://pngu.mgh.harvard.edu/~purcell/plink/data.shtml#ped
http://www.genabel.org/GenABEL/export.plink.html
http://www.bioconductor.org/packages/release/bioc/html/snpStats.html

dim(kin1)

[1] 600 600

rel.mat <- 2 * kin1

2.2.1 A relationship matrix from data in Plink ped format

For data in Plink’s .ped format, the following command creates a relationship
matrix based on the pedigree information in the first few columns of a file called
mypedfile.ped:

rel.mat.pedigree.ped <- GetRelMatrix(datatype="pedigree",

plinkbasefile="mypedfile")

To compute the genomic relationship matrix from the same file the RV-
Pedigree package uses Plink v1.904. In order to tell RVPedigree where to find
the Plink 1.90 binary, you need to specify the path to it using the path2Plink

option5. For example:

rel.mat.genomic.ped <- GetRelMatrix(datatype="genomic",

path2Plink="/tools/genepi/Plink_1.90/plink",

plinkbasefile="mypedfile")

Here we assume that the Plink 1.90 binary can be found in the directory
/tools/genepi/Plink_1.90/.

2.2.2 A relationship matrix from data in Plink bed format

For data in Plink’s .bed format, the following command creates a relationship
matrix based on the pedigree information in the first few columns of a file called
mybedfile.fam:

rel.mat.pedigree.bed <- GetRelMatrix(datatype="pedigree",

is.binary=TRUE,

plinkbasefile="mybedfile")

To compute the genomic relationship matrix from the data in the .bed file,
use:

4Plink 1.90 is currently in beta stage, but it is expected that it will become a stable Plink
2 in the near future, see http://pngu.mgh.harvard.edu/~purcell/plink/plink2.shtml. The
latest binaries can be downloaded from https://www.cog-genomics.org/plink2.

5The reason why you need to explicitly enter the (full) path is the following: The name
of the Plink 1.90 binary is plink, just like the ’regular’ Plink 1.07. Given that Plink 1.90
is still beta we assume that on most systems running plink from the Linux command line
means you get v1.07. You can check this by running plink and checking the output if that
command.

5

http://pngu.mgh.harvard.edu/~purcell/plink/plink2.shtml
https://www.cog-genomics.org/plink2

rel.mat.genomic.bed <- GetRelMatrix(datatype="genomic",

path2Plink="plink_1.90",

is.binary=TRUE,

plinkbasefile="mybedfile")

In this example we assumed that the binary for Plink 1.90 is called plink_1.90

and that it can be found somewhere in your PATH6.

2.2.3 A relationship matrix from data in GenABEL gwaa-data for-
mat

If you are a user of the GenABEL R package7 you probably have your data stored
as a GenABEL object (i.e. GenABEL’s own gwaa-data format). The genotype
data in a GenABEL object can be used like this to create a relationship matrix.
The following code loads the data and prints the number of SNPs and the
number of samples in the data set:

genabel.data <- system.file("extdata", "gwaa.data.RData",

package="RVPedigree")

library(GenABEL)

Loading required package: MASS

Loading required package: GenABEL.data

load(genabel.data)

nsnps(data1)

[1] 3573

nids(data1)

[1] 128

Note that this is a different data set than the one used before, and it will be
used in §4.

To compute the genomic relationship matrix for this data set, use the GetRelMatrix()

function from RVPedigree:

rel.mat.large <- GetRelMatrix("genomic", gwaa.data=data1)

6On a Linux system the environment variable $PATH contains a list of directories in which
the excutables of tools can be found. You can type echo $PATH on the Linux command line
to show the directories in your PATH.

7See www.genabel.org and https://cran.r-project.org/web/packages/GenABEL/.

6

www.genabel.org
https://cran.r-project.org/web/packages/GenABEL/

3 Analysing a single genomic region

With the phenotype data, the covariates and the relationship matrix loaded
it is time for tests of association. Since each of the methods in this package
is a region-based method we will first do one more general step: reading the
map data of the genotypes so we know the basepair coordinate of each genomic
variant.

map.file <- system.file("extdata", "test.map",

package="RVPedigree")

mymap <- readMapFile(map.file)

Now is also a good time to create a variable that contains the name of the
file with genotype data:

geno.file <- system.file("extdata", "test.ped",

package="RVPedigree")

Note: If you would like to run association tests on more than one region
(or use different methods on the same region), the analyses can be speed up by
pre-computing the eigenvalues and eigenvectors of the relationship matrix and
pass these on as parameters. This will be shown in the ASKAT-Normalized
example in §3.2.

3.1 Using ASKAT

This is the simplest way to run the ASKAT method on a single genomic region:

askat.result <- ASKAT.region(y=pheno, X=covar, Phi=rel.mat,

type="ped",

filename=geno.file,

chr=20,

startpos=0,

endpos=10000000,

map=mymap,

regionname="Gene 1")

Warning in snpStats::read.pedfile(file = filename, snps = snps2out):

4 loci were monomorphic

print(askat.result)

Score.Test P.value N.Markers

Gene 1 454.7332 0.7794409 10

7

Here the type option indicates the type of files used for the genotype data:
either Plink .bed files (the default, type="bed") or Plink .ped files (type="ped").
The option filename points to the name of the file containing the genotype
data and chr specifies on which chromosome the genomic region under study
is located. The startpos and endpos options (set to 0 by default) are used to
indicate the start and stop basepair positions of the region. The regionname

option allows the user to specify a name for the region on which the association
test is run. The name is then used in the output of the ASKAT.region() function,
which can be handy in case the output of multiple ASKAT.region() runs need to
be combined.

3.2 Using ASKAT-Normalized

As mentioned earlier it makes sense to pre-compute the eigenvalues and eigen-
vectors of the relationship matrix when you do more than one analysis:

relmat.eig <- eigen(rel.mat)

relmat.eigvec <- relmat.eig$vectors

relmat.eigval <- relmat.eig$values

These pre-computed variables can then be passed on to the various ’region’
functions via the U, and S parameters:

nASKAT.result <- NormalizedASKAT.region(y=pheno, X=covar, Phi=rel.mat,

type="ped",

filename=geno.file,

chr=20,

startpos=0,

endpos=10000000,

map=mymap,

regionname="Gene 1",

U=relmat.eigvec,

S=relmat.eigval)

Warning in snpStats::read.pedfile(file = filename, snps = snps2out):

4 loci were monomorphic

print(nASKAT.result)

Score.Test P.value N.Markers

Gene 1 4998.208 0.5201545 10

3.3 Using VC-C1

This implements the VC-C1 test where an asymptotic approximation to the
p-value is obtained. Phased founder haplotypes are not required.

8

vcc1.result <- VCC1.region(y=pheno, X=covar, Phi=rel.mat,

type="ped",

filename=geno.file,

chr=20,

startpos=0,

endpos=10000000,

map=mymap,

regionname="Gene 1")

Warning in snpStats::read.pedfile(file = filename, snps = snps2out):

4 loci were monomorphic

print(vcc1.result)

Score.Test P.value N.Markers

Gene 1 3345.974 0.2364904 10

3.4 Using VC-C2

The VC-C2 method permutes haplotypes of the founders in order to obtain
empirical p-values. Thus, phased genotypes for all founders are required. The
following example assumes that the data in geno.file are already phased with
the convention that the “first alleles at all variants are assumed to lie on the
same chromosome, and likewise for the second alleles”.

vcc2.result <- VCC2.region(y=pheno, X=covar, Phi=rel.mat,

type="ped",

filename=geno.file,

chr=20,

startpos=0,

endpos=10000000,

map=mymap,

regionname="Gene 1")

Warning in snpStats::read.pedfile(file = filename, snps = snps2out):

4 loci were monomorphic

print(vcc2.result)

Score.Test P.value N.Markers

Gene 1 978.4487 0.18 10

By default, the number of permutations in VC-C2 method is set to 100. To
set it to a higher number, use the Nperm option:

9

vcc2.result <- VCC2.region(y=pheno, X=covar, Phi=rel.mat,

type="ped",

filename=geno.file,

chr=20,

startpos=0,

endpos=10000000,

map=mymap,

regionname="Gene 1",

Nperm=500)

Warning in snpStats::read.pedfile(file = filename, snps = snps2out):

4 loci were monomorphic

print(vcc2.result)

Score.Test P.value N.Markers

Gene 1 978.4487 0.142 10

When founder phasing is not already calculated or known, then details on
how to estimate haplotypes with ShapeIt are given in section 7. After phasing
founders genotypes, it is possible to take the output from ShapeIt (files with
the extension .haps) and pass them in to VCC2.region() function by using the
type= option. See the arguments of the VCC2.region() function in the package
manual.

3.5 Using VC-C3

The VC-C3 method also requires permutation of founder haplotypes to obtain
empirical p-values, and so, again in this example, the data in geno.file are
assumed to be phased with the convention that the “first alleles at all variants
are assumed to lie on the same chromosome, and likewise for the second alleles”.

vcc3.result <- VCC3.region(y=pheno, X=covar, Phi=rel.mat,

type="ped",

filename=geno.file,

chr=20,

startpos=0,

endpos=10000000,

map=mymap,

regionname="Gene 1")

Warning in snpStats::read.pedfile(file = filename, snps = snps2out):

4 loci were monomorphic

print(vcc3.result)

Score.Test P.value N.Markers

Gene 1 978.4487 0.2049198 10

10

Again, like VC-C2, VC-C3 also uses permutations to obtain a p-value. The
same parameter Nperm can be used to change the number of permutations:

vcc3.result <- VCC3.region(y=pheno, X=covar, Phi=rel.mat,

type="ped",

filename=geno.file,

chr=20,

startpos=0,

endpos=10000000,

map=mymap,

regionname="Gene 1",

Nperm=200)

Warning in snpStats::read.pedfile(file = filename, snps = snps2out):

4 loci were monomorphic

print(vcc3.result)

Score.Test P.value N.Markers

Gene 1 978.4487 0.1411562 10

In a similar way as in VC-C2, when founder phasing is unknown, one can
phase founders genotypes using ShapeIt and pass the output in to VCC3.region()

function by using the type= option. See again the arguments of the VCC3.region()

function in the package manual.

4 Using RVPedigree for genome-wide analysis

If, instead of analysing a single genomic region you would like to analyse multiple
regions (e.g. in a genome-wide setting), the overarching RVPedigree() function
can be used.

First, you need to create a data frame that contains (at least) the following
four columns (mind the capitals in the column names) for each region that you
would like to run the association test on:

• Name: The name of the genomic region. This can be a gene name, for
example, or simply Region_01.

• Chr: The chromosome on which the region is located.

• StartPos: The start position (base pair position) of the region.

• EndPos: The end position (base pair position) of the region.

The example data has such a region file with three regions:

11

genes.file <- system.file("extdata", "genes2.lst",

package="RVPedigree")

genes <- read.table(genes.file,

header=TRUE,

stringsAsFactors=FALSE)

genes

Gene Chr Start Stop

1 Gene_1 20 9000000 9004000

2 Gene_2 20 9005000 9020000

3 Gene_3 20 9050050 9075000

colnames(genes) <- c("Name", "Chr", "StartPos", "EndPos")

It is important to note that the RVPedigree() function has a parameter
pvalThreshold, which is set to 0.1 by default. This means that any p-value larger
than or equal to this threshold is removed from the output of the RVPedigree()

function. This done to ensure that the output data of a scan of a large number
of regions can still be reasonably handled8.

The following runs the VC-C1 method on each of the three regions, and to
make sure we capture all output the pvalThreshold is set to 1.0:

gwresults <- RVPedigree(method="VCC1",

y=pheno,

X=covar,

Phi=rel.mat,

regions=genes,

filename=geno.file,

type='ped',

pvalThreshold=1

)

Estimating null model...

Null model estimated.

Starting association analysis of the 3 regions...

Warning in snpStats::read.pedfile(file = filename, snps = snps2out):

2 loci were monomorphic

Warning in VCC1.region(y = y, X = X, Phi = Phi, type = type, filename

= filename, : No genotypes available in the region from 9050050 to

9075000 on chromosome 20

gwresults

Score.Test P.value N.Markers

Gene_1 1768.63 0.3195559 4

Gene_2 1768.63 0.3195559 6

8Large data frames consume a lot of computer memory (RAM).

12

Note that the output contains only two lines, instead of the three expected
given the number of regions analyzed. This is because regions that do not
contain variants are also removed from the output (see also the warning message
in the output above). Note also that the rows of the output are named by the
Name column in the genes data frame.

If the VCC3afterVCC1 option is set to TRUE (and the method option is set
to 'VCC1'), the VC-C3 method is run automatically on the results of the VC-
C1 analysis, as shown in the following example. In this example we also show
how the Nperm parameter can be used to set a different number of permutations
(default: 100) for the calculation of the p-value. The Nperm option is only used
if the VC-C2 or VC-C3 methods are used (cf. § 3.4 and § 3.5).

gwresults <- RVPedigree(method="VCC1",

y=pheno,

X=covar,

Phi=rel.mat,

regions=genes,

filename=geno.file,

type='ped',

Nperm=200,

pvalThreshold=0.4,

VCC3afterVCC1=TRUE

)

Estimating null model...

Null model estimated.

Starting association analysis of the 3 regions...

Warning in snpStats::read.pedfile(file = filename, snps = snps2out):

2 loci were monomorphic

Warning in VCC1.region(y = y, X = X, Phi = Phi, type = type, filename

= filename, : No genotypes available in the region from 9050050 to

9075000 on chromosome 20

’VCC3afterVCC1’ option set, starting VCC3 run...

Estimating null model...

Null model estimated.

Starting association analysis of the 2 regions...

Warning in snpStats::read.pedfile(file = filename, snps = snps2out):

2 loci were monomorphic

gwresults

Score.Test P.value N.Markers

Gene_1 218.1807 0.2674097 4

Gene_2 218.1807 0.2690388 6

13

5 Using multiple CPU cores for parallel analysis

Present-day computers have multiple cores per processor (CPU), each of which
functions as a single computational unit. Consequently, by distributing parts
of the analysis that are independent of each other over these CPU cores and
running them in parallel, a significant speed-up can be obtained.

Since in most cases, we expect that analysis of RVPedigree will be run on
servers that are shared with other users, automatic detection of the number
of cores would lead to various sorts of problems. Therefore, the user has to
manually specify the number of cores RVPedigree can use.

Technically, the parallelisation is done using the foreach package9. The
doParallel package10 is used as parallel backend to foreach.

Within the RVPedigree package distribution we have implemented two ways
in which multicore systems can be used for parallel computation:

• speed up of permutations used to determine the p-values in the VC-C2
and VC-C3 methods.

• analysing multiple genomic regions simultaneously

Details of these implementations can be found in the following sections.

5.1 Parallel permutations to obtain p-values

When only one region is being analyzed, the permutations necessary to obtain p-
values from either the VC-C2 or VC-C3 methods can be parallelized in a similar
way. To this end the VCC2.region() and VCC3.region() functions (cf. §3.4 and
§3.5) have a Ncores parameter. It is up to the user to specify the number of
available cores (the default is Ncores=1).

For example, to run the example analysis from §3.4 with 2 CPU cores use:

vcc2.result <- VCC2.region(y=pheno, X=covar, Phi=rel.mat,

type="ped",

filename=geno.file,

chr=20,

startpos=0,

endpos=10000000,

map=mymap,

regionname="Gene 1",

Nperm=500,

Ncores=2)

Warning in snpStats::read.pedfile(file = filename, snps = snps2out):

4 loci were monomorphic

9On CRAN the foreach package can be found at: https://cran.r-project.org/web/

packages/foreach/
10On CRAN the doParallel package can be found at: https://cran.r-project.org/web/

packages/doParallel/

14

https://cran.r-project.org/web/packages/foreach/
https://cran.r-project.org/web/packages/foreach/
https://cran.r-project.org/web/packages/doParallel/
https://cran.r-project.org/web/packages/doParallel/

print(vcc2.result)

Score.Test P.value N.Markers

Gene 1 978.4487 0.146 10

5.2 Parallel analysis of genomic regions

A user-friendly feature of RVPedigree is the ability to analyze a chosen genomic
region by specifying a table with the name (e.g. gene name), chromosome, and
the start and end base positions of the region (cf. the RVPedigree() function in
§4). Since the association analysis of a given region is independent of the analysis
of other regions, the analysis of multiple regions can easily be distributed over
multiple CPU cores. It is up to the user to tell the RVPedigree() function how
many cores it is allowed to use via the Ncores parameter (the default is Ncores=1).

If the number of genomic regions is smaller than the number of CPU cores,
the RVPedigree() function will automatically try to use the remaining cores to
parallelize the permutations in case the VC-C2 or VC-C3 methods are used.

For example, if 16 CPU cores are available and five regions are to be analyzed,
each region will use one core. If either the VC-C2 or the VC-C3 methods is
specified, the remaining 16 − 4 = 11 cores are split over the five regions so that
each region can use 11

5 = 2 (integer division) extra cores to calculate the p-value.
This runs the RVPedigree example of §4 on two cores:

gwresults <- RVPedigree(method="VCC1",

y=pheno,

X=covar,

Phi=rel.mat,

regions=genes,

filename=geno.file,

type='ped',

Ncores=2,

pvalThreshold=1

)

Estimating null model...

Null model estimated.

Using 2 cores to analyse the regions in parallel

Starting association analysis of the 3 regions...

gwresults

Score.Test P.value N.Markers

Gene_1 1768.63 0.3195559 4

Gene_2 1768.63 0.3195559 6

15

6 Specifying custom genotype weights

Based on the assumption that rare variants are more likely to be causal and have
larger effect sizes, the genotypes are often weighted accordingly. By default, the
weights in RVPedigree are computed as in the SKAT package11, i.e. each variant
is given a weight wi defined by the beta distribution with parameters 1 and 25:

wi = dbeta(fi, 1, 25), (1)

where fi is the Minor Allele Frequency (MAF) of the variant.
The weights parameter of the RVPedigree() function and the *.region()

functions can be used to specify one’s own vector of weights.

7 Notes on using ShapeIT to estimate haplo-
types

The VC-C2 and VC-C3 methods require the haplotypes of the founders to be
present. If this is not the case these need to be estimated using the genotype
data you do have. In this section we give some hints on how to run a tool called
ShapeIT12 that is commonly used to phase genotype data.

When running ShapeIt (or any other tool) for use with this package keep
the following in mind:

• Since in most practical situations the genotype data of a cohort undergoes
a centralized quality control analysis, it makes sense to do quality control
of the phasing at the same time.

• ShapeIt can make use of multiple processor cores. When phasing a (large)
data set, don’t forget to use this option (for ShapeIt add the command
line option --thread 8, which assumes you have 8 CPU cores).

ShapeIt accepts genotype and pedigree data in either Plink .ped/.map format
or in the binary .bed/.bim/.fam format.

For the example below, let’s assume you have your genotype and pedi-
gree data stored in Binary Plink files called genotypes.bed, genotypes.bim and
genotypes.fam.

It is important to note that ShapeIt phases the data per chromosome, and
therefore it also requires the genotype data to be stored such that there is one
file per chromosome. The following command splits an existing data set in Plink
format with file name gwasdata into chunks of one chromosome each:

11The SKAT package can be found on CRAN: https://cran.r-project.org/web/

packages/SKAT/.
12See http://www.shapeit.fr for more detailed information than can be found here. Note

also that part of the information in this section was taken directly from the ShapeIt docu-
mentation.

16

https://cran.r-project.org/web/packages/SKAT/
https://cran.r-project.org/web/packages/SKAT/
http://www.shapeit.fr

for chr in $(seq 1 22); do

plink --file gwasdata \

--chr ${chr} \

--recode \

--make -bed \

--out gwas.chr${chr};
done

To run ShapeIt on the first chromosome, run:

shapeit \

--input -bed gwas -chr1.bed gwas -chr1.bim gwas -chr1.fam \

--input -map genetic_map.txt \

--output -max gwas -chr1.phased.haps gwas -chr1.phased.sample

References

[1] Lakhal-Chaieb L, Oualkacha K, Richards JB, Greenwood CM. A rare vari-
ant association test in family-based designs and non-normal quantitative
traits. Stat Med. 2015 Sep 29. doi: 10.1002/sim.6750.

[2] Oualkacha K, Dastani Z, Li R, Cingolani PE, Spector TD, Hammond CJ,
Richards JB, Ciampi A, Greenwood CMT. Adjusted sequence kernel asso-
ciation test for rare variants controlling for cryptic and family relatedness.
Genet Epidemiol. 2013 May;37(4):366-76. doi:10.1002/gepi.21725.

17

http://dx.doi.org/10.1002/sim.6750
http://dx.doi.org/10.1002/gepi.21725

	1 Introduction
	2 Loading the input data
	2.1 Genotype data
	2.2 Loading or creating a relationship matrix
	2.2.1 A relationship matrix from data in Plink ped format
	2.2.2 A relationship matrix from data in Plink bed format
	2.2.3 A relationship matrix from data in GenABEL gwaa-data format

	3 Analysing a single genomic region
	3.1 Using ASKAT
	3.2 Using ASKAT-Normalized
	3.3 Using VC-C1
	3.4 Using VC-C2
	3.5 Using VC-C3

	4 Using RVPedigree for genome-wide analysis
	5 Using multiple CPU cores for parallel analysis
	5.1 Parallel permutations to obtain p-values
	5.2 Parallel analysis of genomic regions

	6 Specifying custom genotype weights
	7 Notes on using ShapeIT to estimate haplotypes

