#############################################################################################
## Cascade CEA Model - Combination Interventions (Core)
## Derive the new incidence data to facilitate the ggplot of annual absolute number of new infections
## Last updated: March 13, 2020
############################################################################################
#INITIALIZE the data frame and matrix
city.column <- c(rep("Atlanta", 26*3), rep("Baltimore", 26*3), rep("Los Angeles", 26*3), rep("Miami", 26*3), rep("New York City", 26*3), rep("Seattle", 26*3))
scenario.column <- rep(c(rep("Status Quo", 26), rep("Documented", 26), rep("Ideal",26)), 6)
year.column <- rep(c(2015:2040), 18)
ggplotdata <- data.frame(City = city.column, Scenario = scenario.column, Year = year.column)
ggplotdata$PE <- rep(0, 26*6*3)
reduction.matrix.documented <- matrix(0, ncol = 10, nrow = 6)
colnames(reduction.matrix.documented) <- c("2025_target", "2025_mean", "2025_median", "2025_lower", '2025_upper',
"2030_target", "2030_mean", "2030_median", "2030_lower", '2030_upper')
rownames(reduction.matrix.documented) <- c("Atlanta", "Baltimore", "Los Angeles", "Miami", "New York City", "Seattle")
reduction.matrix.ideal <- reduction.matrix.documented
#LOAD the combination strategies
combination.list <- readRDS("Combination/Combination.list.rds")
#LOAD city and functions
all.cities <- c("ATL", "BAL", "LA", "MIA", "NYC", "SEA")
city.name.list <- c("Atlanta", "Baltimore", "Los Angeles", "Miami", "New York City", "Seattle")
n.sample <- 2000
#source("Scripts/CascadeCEA-Interventions-0-Function-incidence.derivation.R")
for (ww in 1:6){
CITY <- all.cities[ww]
CITY.name <- city.name.list[ww]
ocis <- readRDS(paste0("Combination/ProductionFunction-Frontier-", CITY, ".rds"))$ocis
case <- "Status Quo"
incidence <- incidence.derivation(CITY = CITY, case = case, ocis = ocis)
ggplotdata$PE[ggplotdata$City == CITY.name & ggplotdata$Scenario == case] <- incidence$pe
ggplotdata$Median[ggplotdata$City == CITY.name & ggplotdata$Scenario == case] <- incidence$median
ggplotdata$Lower[ggplotdata$City == CITY.name & ggplotdata$Scenario == case] <- incidence$lower
ggplotdata$Upper[ggplotdata$City == CITY.name & ggplotdata$Scenario == case] <- incidence$upper
case <- "Documented"
incidence <- incidence.derivation(CITY = CITY, case = case, ocis = ocis)
ggplotdata$PE[ggplotdata$City == CITY.name & ggplotdata$Scenario == case] <- incidence$pe
ggplotdata$Median[ggplotdata$City == CITY.name & ggplotdata$Scenario == case] <- incidence$median
ggplotdata$Lower[ggplotdata$City == CITY.name & ggplotdata$Scenario == case] <- incidence$lower
ggplotdata$Upper[ggplotdata$City == CITY.name & ggplotdata$Scenario == case] <- incidence$upper
reduction.matrix.documented[CITY.name, ] <- incidence$reduction
case <- "Ideal"
incidence <- incidence.derivation(CITY = CITY, case = case, ocis = ocis)
ggplotdata$PE[ggplotdata$City == CITY.name & ggplotdata$Scenario == case] <- incidence$pe
ggplotdata$Median[ggplotdata$City == CITY.name & ggplotdata$Scenario == case] <- incidence$median
ggplotdata$Lower[ggplotdata$City == CITY.name & ggplotdata$Scenario == case] <- incidence$lower
ggplotdata$Upper[ggplotdata$City == CITY.name & ggplotdata$Scenario == case] <- incidence$upper
reduction.matrix.ideal[CITY.name, ] <- incidence$reduction
}
write.csv(ggplotdata,'Outputs/Incidence/AnnualIncidenceRate.csv')
saveRDS(ggplotdata, paste0("Outputs/Incidence/incidence_ggplot_range.rds"))
write.csv(reduction.matrix.documented,'Outputs/Incidence/IncidenceReduction(documented).csv')
write.csv(reduction.matrix.ideal,'Outputs/Incidence/IncidenceReduction(ideal).csv')
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.