LEQbench

Jorg Kuharev & Pedro Navarro
2016-08-30

LFQbench is an open source R package for the automated evaluation of label-free quantification performance.
The evaluation bases on the interpretation of the quantitative analysis results of hybrid proteome samples
prepared in known ratios.

LFQbench calculates and represents graphically a set of qualitative and quantitative performance metrics
like identification rates, precision and accuracy of quantification, providing developers and end-users with
a standardized set of reports to enable an in-depth performance evaluation of their software and analysis
platforms.

Step by step example

In this section we show and comment a stepwise analysis of a single report produced by ISOQuant (software
for the quantitative post-processing analysis of Waters HDMSF data). The sample set is composed of two
hybrid proteome samples with symmetric 10:1 and 1:10 expression ratios:

e 65% HUMAN proteins in both samples
e 30% YEAST proteins in sample A and 3% in sample B
e 3% ECOLI proteins in sample A and 30% in sample B

Define sample set composition

The sample set composition is defined as a data.frame that contains a row per species and a column per
sample. In addition to the number of samples, species names are stored in the first column. Following
columns define corresponding relative protein amounts for each sample.

sampleComposition = data.frame(
species = c("HUMAN","YEAST", "ECOLI"),
A = c(67, 30, 3),
B c(67, 3, 30)

Define the data sets you want to analyse.

FEach dataset is defined as a named vector of strings. The strings define the raw file names of the dataset as
they are defined at the report(s) of the software tool(s) you want to benchmark. FSWE can analyse two
samples (sample A and sample B), which defer on their species composition ratio. It is required to input the
same number of replicates for both samples A and B. The first half of values of the named vector defining
raw names is interpreted as sample A, and the second half is interpreted as sample B.

dataSets = data.frame(
"HYE110_SynaptG2S" = c(
paste(rep("HYE110_A"), 1:3, sep
paste(rep("HYE110_B"), 1:3, sep

", II) s
", II)

),

row.names = C(llAlll’ IIA2I|’ |IA3H’ I|B1ll’ IIB2II, IIBSH)

Define the species tags

Protein names should provide a clue about the species. A convenient format is Uniprot’s entry name (example:
1433B__HUMAN is the entry name of the 14-3-3 protein beta/alpha of human). These species tags (clues)
must be defined in FSWE as a named list.

speciesTags = list(

HUMAN = "_HUMAN",
YEAST = "_YEAS",
ECOLT = "_ECOLI"

Initialize LFQbench

Before using any LFQbench functionality, LFQbench library must be loaded and its modules must be
initialized using LFQbench.initConfiguration() and FSWE.initConfiguration() functions. LFQbench module
must be initialized before FSWE.

library (LFQbench)

LFQbench.initConfiguration(
SampleComposition = sampleComposition

)

FSWE.initConfiguration(
injectionNames = dataSets,
speciesTags = speciesTags

)

Note: The initialization process will create new objects in the global R environment

« LFQbench.Config: containing a list of configuration parameters for the analysis. The configuration
values can be directly as paremeters of the command LFQbench.initConfiguration() or modified by
using the command LFQbench.changeConfiguration() at a later time point.

o FSWE.modificationsToUniMod: a list of default fixed and variable modifications as they appear
within the sequence, and their corresponding translation to UniMod. If you miss any modification, you
may add it by using the function FSWE.addModification.

e FSWE.configFunctionForSoftware: this object contains configuration parameters to read
each specific software tool report. There are many default software tool configurations (see
FSWE.softwareNames), and you can add your own configurations by using FSWE.addSoftwareConfiguration.

Define data root folder

Set the directory that stores all software tool reports as data root folder. You may also create a subfolder
structure, which will contain LFQbench analyses.

srcDir = "../ext/data/vignette_examples/hye110"

LFQbench.setDataRootFolder (
rootFolder = srcDir,

createSubfolders = T

Add configuration for ISOQuant peptide report

FSWE already contains some predefined software report formats.

print(paste(FSWE.softwareNames, collapse=","))

[1] “DIAumpire, DIAumpBuiltinProteins,O0penSWATH PeakView,PViewNoFilter,PViewBuiltinProteins,Skyline,Spectronaut”

In case you need to add an extra software report format, it only requires to know some necessary column
names. In this example, we use a non default software tool report from ISOQuant. We can configure it with
the following command:

FSWE.addSoftwareConfiguration(
Software configuration name
softwareName = "ISOQuant_pep",

input_format can be wide or long.

Wide contains all quantitative values (all samples and replicates)

for a peptide in a single Tow,

whereas long contains a single quantitative value (just one replicate) in a Tow.
input_format = "wide",

it 1s important to know that LF@bench honours the extension:
csv are COMMA separated values,

tsv are TAB separated values

input.extension = "*.csv§",

how NA (not available) wvalues are reported
nastrings = " ",

in long formats, how the quantitative wvalue column %S mamed
quantitative.var = make.names("intensity in"),

in wide formats, how quantitative values are tagged
#(they also should include the injection names reported at the datasets object)
quantitative.var.tag = make.names("intensity in"),

name of the protein name vartiable.
Remember: protein names should include spectes information (speciesTags)
protein.var = "entry",

variable name of sequence
(including modifications as defined in FSWE.modificationsToUniMod)
sequence.mod.var = "sequence',

vartable name of the precursar charge state.
charge.var = make.names("signal_charge")

Add an amino acid modification

You may add new modifications (or modifications reported in different ways for each software tool) by
using the command FSWE.addModification(). You must use a regular expression compatible format to add
modifications.

FSWE.addModification(
modificationRegExps = "\\[0xi\\]",
UniModStrings = "\\(UniMod:35\\)"

list modifications available
print(FSWE.modificationsToUniMod)

Generate reports in LFQbench format

FSWE parses software tool reports, makes some common data processing (like adding up quantitative values
of the different charge states for a same peptide), and outputs each analysed report file in two different files
(peptide and protein summaries) compatible with LFQbench at the newly created input subfolder of the data
root folder.

inputFiles = list.files(
path = LFQbench.Config$DataRootFolder,
pattern = "\\..+"

)
nix = sapply(
inputFiles,
FSWE.generateReports,
softwareSource = '"guess",

keep_original_names = T,
singleHits = F,
plotHistogram = T,
plotHistNAs = T,
reportSequences = F

)

Note: By default FSWE assigns the reading report configuration in function of the report name (software-
Source = “guess”). This is done by parsing the start of the file name and comparing it with the available
FSWE.softwareNames. It is then recommendable to rename your files by including at the start the software
name as it appears at the FSWE.configFunctionForSoftware (you can see the current available names at
FSWE.softwareNames). In this execution, the current available names are: . By renaming the file names this
way, you are able to run all LFQbench analyses of different software tools in the same LFQbench analysis
batch.

Perform LFQbench analysis

LFQbench analyses can be run in a batch.

some configuration changes for beautifying plots

LFQbench.changeConfiguration(
LogIntensityPlotRange = c(9,21),
LogRatioPlotRange = c(-7,7)

run batch analysis and keep result set
res = LFQbench.batchProcessRootFolder ()

All output files of a batch analysis will be stored at log and plot subfolders of the data root folder, and also
they can be further used to represent data online.

Display metrics

LFQbench produces a set of predefinet metrics for every benchmarked file. You can access this metrics using
the function LFQbench.getMetrics().

getting the result set of the first benchmarked file

rs = res[[1]]

m = LFQbench.getMetrics(
resultSet = rs

)
get local accuracy and prectision (by intensity tertiles)
acc = m$ Local accuracy $ A:B"

prec = m$ Local precision $ A:B”

Table 1: Local accuracy

HUMAN YEAST ECOLI

Q1 0.0407167 0.0961928 0.3142869
Q2 0.0099683 -0.0211730 -0.1345117
Q3 -0.0336584 -0.5847002 0.2553325

Table 2: Local precision

HUMAN YEAST ECOLI

Q1 0.9431045 1.763697 1.7543298
Q2 0.7325138 1.505324 0.8127825
Q3 0.6213687 1.782097 0.9078830

Full list of predefined metrics: name,Identification statistics,Quantification statistics,Technical variance,Global
accuracy,Global precision,Global species overlap,Local accuracy,Local precision,Local species overlap

Display plots

get the benchmark result for the first sample pair of the recently used result set
samplePairRes = rs$result[[1]]

display the scatter plot

LFQbench.showScatterAndBoxPlot (
samplePair = samplePairRes,
showLegend = T

= HUMAN === YEAST o= ECOLI

10 12 14 16 18 20

Log, (B)

display the distributions of log ratios
LFQbench.showDistributionDensityPlot (

= samplePairRes,

samplePair

showLegend = F

2
5 0.6 -
-
]
0 0.4 A

-6 -4 -2 0 2 4 6
Log, (A:B)

At once example

In this section we show a complete analysis of two reports produced by Spectronaut and SWATH 2.0
(PeakView) software tools. The sample set is composed of two hybrid proteome samples with asymmetric 2:1
and 1:4 expression ratios:

e 65% HUMAN proteins in both samples
e 30% YEAST proteins in sample A and 15% in sample B
e 5% ECOLI proteins in sample A and 20% in sample B

sampleComposition = data.frame(
species = c("HUMAN", "YEAST", "ECOLI"),
A c(65, 30, 05),
B c(65, 15, 20)

)

dataSets = data.frame(
"HYE124 TTOF6600_64var" = c(
"lgillet_I150211_008", "lgillet_I150211_010", "lgillet_I150211_012", # A
"lgillet_I150211_009", "lgillet I150211 011", "lgillet_I150211 013" # B
Do
row.names = C(IlAlll, I|A2|l’ "A3", "Bl”, "BQ", ng3n)

speciesTags = list(

HUMAN = "_HUMAN",
YEAST = "_YEAS",
ECOLI = "_ECOLI"

LFQbench.initConfiguration(
SampleComposition = sampleComposition

)

FSWE.initConfiguration(
injectionNames = dataSets,
speciesTags = speciesTags

)

we don't nmeed to define new software report format in this example
because Spectronaut and PeakView (SWATH 2.0) report formats are predefined in FSWE

srcDir = "../ext/data/vignette_examples/hyel24"

LFQbench.setDataRootFolder (
rootFolder = srcDir,
createSubfolders = T

inputFiles = list.files(
path = LFQbench.Config$DataRootFolder,
pattern = "\\..+"

)

nix = sapply(
inputFiles,
FSWE.generateReports,
softwareSource = '"guess",

keep_original _names = T,
singleHits = F,
plotHistogram =
plotHistNAs = T,
reportSequences = F

T,

hye124.res = LFQbench.batchProcessRootFolder ()

	Step by step example
	Define sample set composition
	Define the data sets you want to analyse.
	Define the species tags
	Initialize LFQbench
	Define data root folder
	Add configuration for ISOQuant peptide report
	Add an amino acid modification
	Generate reports in LFQbench format
	Perform LFQbench analysis
	Display metrics
	Display plots

	At once example

