R/model-poisson-bayes.R

#' Bayesian Poisson Regression
#'
#' @param formula a symbolic representation of the model to be
#'   estimated, in the form \code{y ~ x1 + x2}, where \code{y} is the
#'   dependent variable and \code{x1} and \code{x2} are the explanatory
#'   variables, and \code{y}, \code{x1}, and \code{x2} are contained in the
#'   same dataset. (You may include more than two explanatory variables,
#'   of course.) The \code{+} symbol means ``inclusion'' not
#'   ``addition.'' You may also include interaction terms and main
#'   effects in the form \code{x1*x2} without computing them in prior
#'   steps; \code{I(x1*x2)} to include only the interaction term and
#'   exclude the main effects; and quadratic terms in the form
#'   \code{I(x1^2)}.
#' @param model the name of a statistical model to estimate.
#'   For a list of other supported models and their documentation see:
#'   \url{http://docs.zeligproject.org/articles/}.
#' @param data the name of a data frame containing the variables
#'   referenced in the formula or a list of multiply imputed data frames
#'   each having the same variable names and row numbers (created by
#'   \code{Amelia} or \code{\link{to_zelig_mi}}).
#' @param ... additional arguments passed to \code{zelig},
#'   relevant for the model to be estimated.
#' @param by a factor variable contained in \code{data}. If supplied,
#'   \code{zelig} will subset
#'   the data frame based on the levels in the \code{by} variable, and
#'   estimate a model for each subset. This can save a considerable amount of
#'   effort. You may also use \code{by} to run models using MatchIt
#'   subclasses.
#' @param cite If is set to 'TRUE' (default), the model citation will be printed
#'   to the console.
#' @examples
#' data(sanction)
#' z.out <- zelig(num ~ target + coop, model = "poisson.bayes",data = sanction, verbose = FALSE)
#'
#' @details
#' Additional parameters avaialable to this model include:
#' \itemize{
#'   \item \code{weights}: vector of weight values or a name of a variable in the dataset
#'   by which to weight the model. For more information see:
#'   \url{http://docs.zeligproject.org/articles/weights.html}.
#'   \item \code{burnin}: number of the initial MCMC iterations to be discarded (defaults to 1,000).
#'   \item \code{mcmc}: number of the MCMC iterations after burnin (defaults to 10,000).
#'   \item \code{tune}: Metropolis tuning parameter, either a positive scalar or a vector of length
#'   kk, where kk is the number of coefficients. The tuning parameter should be set such that the
#'   acceptance rate of the Metropolis algorithm is satisfactory (typically between 0.20 and 0.5).
#'   The default value is 1.1.
#'   \item \code{thin}: thinning interval for the Markov chain. Only every thin-th draw from the
#'    Markov chain is kept. The value of mcmc must be divisible by this value. The default value is 1.
#'   \item \code{verbose}: defaults to FALSE. If TRUE, the progress of the sampler (every 10\%) is
#'   printed to the screen.
#'   \item \code{seed}: seed for the random number generator. The default is \code{NA} which
#'   corresponds to a random seed of 12345.
#'   \item \code{beta.start}: starting values for the Markov chain, either a scalar or vector
#'   with length equal to the number of estimated coefficients. The default is \code{NA}, such that the maximum likelihood estimates are used as the starting values.
#' }
#' Use the following parameters to specify the model's priors:
#' \itemize{
#'     \item \code{b0}: prior mean for the coefficients, either a numeric vector or a scalar.
#'     If a scalar value, that value will be the prior mean for all the coefficients.
#'     The default is 0.
#'     \item \code{B0}: prior precision parameter for the coefficients, either a square matrix
#'     (with the dimensions equal to the number of the coefficients) or a scalar.
#'     If a scalar value, that value times an identity matrix will be the prior precision parameter.
#'     The default is 0, which leads to an improper prior.
#' }
#' @return Depending on the class of model selected, \code{zelig} will return
#'   an object with elements including \code{coefficients}, \code{residuals},
#'   and \code{formula} which may be summarized using
#'   \code{summary(z.out)} or individually extracted using, for example,
#'   \code{coef(z.out)}. See
#'   \url{http://docs.zeligproject.org/articles/getters.html} for a list of
#'   functions to extract model components. You can also extract whole fitted
#'   model objects using \code{\link{from_zelig_model}}.
#'
#'
#' @seealso Vignette: \url{http://docs.zeligproject.org/articles/zelig_poissonbayes.html}
#' @import methods
#' @export Zelig-poisson-bayes
#' @exportClass Zelig-poisson-bayes
#'
#' @include model-zelig.R
#' @include model-bayes.R
#' @include model-poisson.R

zpoissonbayes <- setRefClass("Zelig-poisson-bayes",
                             contains = c("Zelig-bayes",
                                          "Zelig-poisson"))

zpoissonbayes$methods(
  initialize = function() {
    callSuper()
    .self$name <- "poisson-bayes"
    .self$family <- "poisson"
    .self$link <- "log"
    .self$linkinv <- eval(call(.self$family, .self$link))$linkinv
    .self$year <- 2013
    .self$category <- "continuous"
    .self$authors <- "Ben Goodrich, Ying Lu"
    .self$description = "Bayesian Poisson Regression"
    .self$fn <- quote(MCMCpack::MCMCpoisson)
    # JSON from parent
    .self$wrapper <- "poisson.bayes"
  }
)


zpoissonbayes$methods(
  mcfun = function(x, b0=0, b1=1, ..., sim=TRUE){
    lambda <- exp(b0 + b1 * x)
    if(sim){
        y <- rpois(n=length(x), lambda=lambda)
        return(y)
    }else{
        return(lambda)
    }
  }
)
IQSS/Zelig documentation built on Dec. 11, 2023, 1:51 a.m.