# demo/normal.gam.R In IQSS/ZeligGAM4: General Additive Models for Zelig

```#####  Example 1: Basic Example with First Differences  #####

# Create some sample data:
set.seed(0)
n<-400
sig<-2
x0 <- runif(n, 0, 1)
x1 <- runif(n, 0, 1)
x2 <- runif(n, 0, 1)
x3 <- runif(n, 0, 1)
f0 <- function(x) 2 * sin(pi * x)
f1 <- function(x) exp(2 * x)
f2 <- function(x) 0.2*x^11*(10*(1-x))^6+10*(10*x)^3*(1-x)^10
f3 <- function(x) 0*x
f <- f0(x0) + f1(x1) + f2(x2)
e <- rnorm(n, 0, sig)
y <- f + e
my.data <- as.data.frame(cbind(y, x0, x1, x2, x3))

# Estimate model, present a summary and a plot of the results:
user.prompt()
z.out <- zelig(y~s(x0)+s(x1)+s(x2)+s(x3), model="normal.gam", data=my.data)
user.prompt()
summary(z.out)
user.prompt()
plot(z.out,pages=1,residuals=TRUE)

# Set explanatory variables to their default (mean/mode) values, with
# high (80th percentile) and low (20th percentile) values:
user.prompt()
x.high <- setx(z.out, x3= quantile(my.data\$x3, 0.8))
x.low  <- setx(z.out, x3 = quantile(my.data\$x3, 0.2))

# Generate first differences for the effect of high versus low x3 on y:
user.prompt()
s.out <- sim(z.out, x=x.high, x1=x.low)
user.prompt()
summary(s.out)

# Generate a second set of fitted values and a plot:
user.prompt()
plot(s.out)

#####  Example 2: An extra ridge penalty (useful with convergence problems) #####

user.prompt()
z.out <- zelig(y~s(x0)+s(x1)+s(x2)+s(x3), H=diag(0.5,37), model="normal.gam", data=my.data)
user.prompt()
# Set values for the explanatory variables, using the default mean/mode values
user.prompt()
x.out <- setx(z.out)

# Simulate quantities of interest:
user.prompt()
s.out <- sim(z.out, x=x.high)

# Plot differences:
user.prompt()
plot(s.out)

#####  Example 3: Set the smoothing parameter for the first term, estimate the rest #####
user.prompt()
z.out <- zelig(y~s(x0)+s(x1)+s(x2)+s(x3),sp=c(0.01,-1,-1,-1), model="normal.gam", data=my.data)
plot(z.out,pages=1)

#####  Example 4: Set lower bounds on smoothing parameters #####
user.prompt()
z.out <- zelig(y~s(x0)+s(x1)+s(x2)+s(x3),min.sp=c(0.001,0.01,0,10), model="normal.gam", data=my.data)
print(z.out)

#####  Example 5: A GAM with 3df regression spline term & 2 penalized terms #####
user.prompt()
z.out <-zelig(y~s(x0,k=4,fx=TRUE,bs="tp")+s(x1,k=12)+s(x2,k=15), model="normal.gam", data=my.data)
plot(z.out,pages=1)
```
IQSS/ZeligGAM4 documentation built on May 10, 2017, 2:11 a.m.