README.md

DOI Documentation

FishLife

FishLife is an collaborative and international project that aims to:

  1. Compile life-history traits (demographic parameters as well as behavioral, reproductive, morphological, and trophic traits)
  2. Estimate trade-offs among traits while imputing missing values;
  3. Distribute imputed trait-values (and standard errors) for use in fisheries science and management.

The FishLife R-package includes results from three prior analyses:

For each of these three analyses, the R-package FishLife includes the compiled database of trait measurements (aim-1), the estimated covariance among traits (aim-2), and the imputed trait values (aim-3). See package vignettes for more details.

Description of package

Please cite if using the software

Previous software versions and analytical descriptions

Further reading

Evaluating accuracy of data and life-history predictions in FishBase

Simplified software for phylogenetic structural equation models

Role for phylogenetic comparative methods in fisheries science

Description of research

Presentation of research program available online

Applications for stock assessment

Journal Arcticles using FishLife

  1. Auber, A., Waldock, C., Maire, A., Goberville, E., Albouy, C., Algar, A.C., McLean, M., Brind’Amour, A., Green, A.L., Tupper, M., Vigliola, L., Kaschner, K., Kesner-Reyes, K., Beger, M., Tjiputra, J., Toussaint, A., Violle, C., Mouquet, N., Thuiller, W., Mouillot, D., 2022. A functional vulnerability framework for biodiversity conservation. Nat. Commun. 13, 4774. https://doi.org/10.1038/s41467-022-32331-y

  2. Fitz, K.S., Montes Jr., H.R., Thompson, D.M., Pinsky, M.L., n.d. Isolation-by-distance and isolation-by-oceanography in Maroon Anemonefish (Amphiprion biaculeatus). Evol. Appl. n/a. https://doi.org/10.1111/eva.13448

  3. Fujiwara, M., Simpson, A., Torres-Ceron, M., Martinez-Andrade, F., 2022. Life-history traits and temporal patterns in the incidence of coastal fishes experiencing tropicalization. Ecosphere 13, e4188. https://doi.org/10.1002/ecs2.4188

  4. Hay, A., Riggins, C.L., Heard, T., Garoutte, C., Rodriguez, Y., Fillipone, F., Smith, K.K., Menchaca, N., Williamson, J., Perkin, J.S., 2022. Movement and mortality of invasive suckermouth armored catfish during a spearfishing control experiment. Biol. Invasions. https://doi.org/10.1007/s10530-022-02834-2

  5. Hirota, D.S., Haimovici, M., Sant’Ana, R., Mourato, B.L., Santos, E.K., Cardoso, L.G., 2022. Life history, population dynamics and stock assessment of the bycatch species Brazilian flathead (Percophis brasiliensis) in southern Brazil. Reg. Stud. Mar. Sci. 102597. https://doi.org/10.1016/j.rsma.2022.102597

  6. Mora, P., Figueroa-Muñoz, G., Cubillos, L., Strange-Olate, P., 2022. A data-limited approach to determine the status of the artisanal fishery of sea silverside in southern Chile. Mar. Fish. Sci. MAFIS 35, 275–298.

  7. Omori, K.L., Tribuzio, C.G., Babcock, E.A., Hoenig, J.M., 2021. Methods for Identifying Species Complexes Using a Novel Suite of Multivariate Approaches and Multiple Data Sources: A Case Study With Gulf of Alaska Rockfish. Front. Mar. Sci. 1084.

  8. Pawluk, M., Fujiwara, M., Martinez-Andrade, F., 2022. Climate change linked to functional homogenization of a subtropical estuarine system. Ecol. Evol. 12, e8783. https://doi.org/10.1002/ece3.8783

  9. Pons, M., Cope, J.M., Kell, L.T., 2020. Comparing performance of catch-based and length-based stock assessment methods in data-limited fisheries. Can. J. Fish. Aquat. Sci. 77, 1026–1037. https://doi.org/10.1139/cjfas-2019-0276

  10. Rudd, M.B., Thorson, J.T., Sagarese, S.R., 2019. Ensemble models for data-poor assessment: accounting for uncertainty in life-history information. ICES J. Mar. Sci. 76, 870–883. https://doi.org/10.1093/icesjms/fsz012

  11. Safaraliev, I.A., Popov, N.N., 2022. Qualitative Assessment of the Stock Status of Freshwater Bream Abramis brama (Cyprinidae) from the Ural Stock Based on the LB-SPR Method. J. Ichthyol. 62, 476–486. https://doi.org/10.1134/S0032945222030134

  12. Thorson, J.T., 2020. Predicting recruitment density dependence and intrinsic growth rate for all fishes worldwide using a data-integrated life-history model. Fish Fish. 21, 237–251. https://doi.org/10.1111/faf.12427

  13. Thorson, J.T., Munch, S.B., Cope, J.M., Gao, J., 2017. Predicting life history parameters for all fishes worldwide. Ecol. Appl. 27, 2262–2276. https://doi.org/10.1002/eap.1606



James-Thorson/FishLife documentation built on Feb. 29, 2024, 3:47 a.m.