wsiHD - Weak Signal Inference Under High Dimensionality

August 5, 2021

Introduction

wtsHD is an R package that implements an analytic framework to regulate false negative errors under
measures tailored towards modern applications with high-dimensional data. The method controls the false
negative proportion (FNP) at a user-specified level and regulates the amount of unnecessary false positives
to achieve the FNP level. The framework comprises three steps, the estimation of the bounding sequences,
the estimation of the signal proportion, and the estimation of the FNP. The implementation of each step is
described in the following section. An illustrative example based on the dataset provided with the package is
also provided.

Functions

cSeq()

This function estimates the bounding sequences using the empirical distributions

. 75 . . 76 .
Vosa — max 17/p — ®(w())l and Vi — max 17/p — ®(w(y))|

S B (wg) YIS D))

where p is the total number of variables (signal + noise), ®(t) = 1 — ®(¢), ®(¢) is the cumulative distribution
function, and w;y,j = 1,...,p are statistics generated under the null distribution. The bounding sequences
Ca0.5 and ¢, 1 are taken as the (1 — a)-th quantiles of Vg 5, and V4 4, respectively.

The function call takes the following form:

cSeq(pval_null, alpha = 0.1)

where input pval_null is a {p X n} maxtrix-like object containing n sets of p p-values obtained from samples
of the null distribution and alpha is a numeric object in (0, 1] specifying the quantile with default value
a=0.1.

Note that each set of samples is provided as a column vector; typically p > n.

The function is an S4 method with implementations defined for the following signatures:
e pval_null = "matrix"

Input pval_null is a standard R "numeric matrix," and only methods defined in base R and the
stats package are used to obtain estimates;

e pval_null = "big.matrix"

Input pval_null is an object of class "big.matrix" as defined by package bigmemory, and Rcp-
pArmadillo methods are used to obtain estimates; and

e pval_null = "ff_matrix'

Input pval_null is an object of class "ff_matrix" as defined by package ff, and methods defined in
packages ff and ffbase are used to obtain estimates.

The bigmemory and ff packages offer file-based access to data, which can accommodate larger matrices.
Though highly optimized, these methods can have longer run times.

signalProp()

This function estimates the signal proportion as follows. First, the estimators using each bounding sequence
are calculated as

S /P = ®(2() = Ca0.51/ B(2(5)) e = Be) — can®(ap)
IR TS 1—B(z;)) PSS 1—B(z;)

where z(;) are the test statistics and cq,0.5 and c,,1 are the estimated bounding sequences defined previously.
The estimated signal proportion is taken as # = max{#g 5, 71 }.

This estimator is implemented through function signalProp() and can be called to estimate the signal
proportions given estimators for the bounding sequences

signalProb(pval, ..., c05, cl1)

or to estimate both the bounding sequences and the signal proportions

signalProb(pval, pval_null, ..., alpha = 0.1)

where input pval is a vector-like object of p-values. Inputs c05 and c1 are the estimated bounding sequences
Ca,0.5 and cq 1, respectively. Inputs pval_null and «a are as defined for cSeq().

Recall that formal arguments after an ellipsis (...) must be provided as named inputs.

The function is an S4 method with implementations as follows:

If estimated bounding sequences are provided as numeric objects through named inputs c05 and c1, and
input pval_null is either not provided (“missing”) or is set to NULL,
the following S4 signatures are defined

e pval = "numeric"

If input pval is a standard R "numeric vector," only methods defined in base R and the stats package
are used to obtain estimates.

e pval = "big.matrix"

If input pval is an object of class "big.matrix" as defined by package bigmemory with a single row
or a single column, ReppArmadillo methods are used to obtain estimates.

e pval = "ff_vector’

If input pval is an object of class "ff_vector" as defined by package ff, methods defined in packages ff
and ffbase are used to obtain estimates.

The second input configuration is equivalent to calling cSeq(pval_null, alpha) and signalProp(pval,
c05, c1) sequentially. Thus, the signatures defined for pval_null for cSeq() in the preceding subsection
and those for pval above apply. Note that the class of the objects used for pval and pval_null do not have
to be related, e.g. pval = “numeric” and pval_null = “big.matrix” is an accepted combination.

Further there are signatures that we do not explicitly mention here that have been included to accommodate
vector-like classes. For example, if pval = “matrix” with a single column or a single row, methods have
been implemented to identify these cases and process the input data into vector form. Similarly for objects of
class “ff_array.”

JnpOpt()

The fnpOpt() function estimates

FNP(2(;)) = max{l — j/5 + (p — 8)®(=;))/4,0},

where z(;),7 = 1,...,p, are the test statistics, § = [p* 7], and 7 is the estimated signal proportion defined
previously.

This functions can be called to estimate the FNP given an estimated number of signals

fnpOpt(pval, ..., beta, sHat)

or to perform all three steps of the framework, i.e., estimate the bounding sequence, signal proportion, and
FNP

fnpOpt (pval, pval_null, ..., beta, alpha = 0.1)

where input pval is a vector-like object of p-values and beta is the tolerance threshold. Input sHat is the
estimated number of signal variables. Inputs pval_null and alpha are as defined for cSeq().

Again we mention that formal arguments after an ellipsis (...) must be provided as named inputs.

Similar to the description given for signalProb(), this function is an S4 method with implementations as
follows:

If sHat and beta are provided, and input pval_null is either not provided (“missing”) or is set to NULL,
the following S4 signatures are defined

e pval = "numeric’

If pval is a standard R "numeric vector," only methods defined in base R and the stats package are
used to obtain the estimates.

e pval = "big.matrix’

If pval is an object of class "big.matrix" as defined by package bigmemory with a single row or a
single column, RcppArmadillo methods are used to obtain the estimates.

e pval = "ff_vector’

If pval is an object of class "ff_vector" as defined by package ff, methods defined in packages ff and
ffbase are used to obtain the estimates.

The full framework call structure simply uses the inputs to call cSeq(pval_null, alpha), signalProp(pval,
c05, c1), and fnpOpt(pval, beta, sHat) sequentially. Thus, the signatures previously discussed for these
functions apply.

As for signalProb() there are signatures that we do not explicitly mention here that have been included to
accommodate vector-like classes.

print()

A convenience function to provide results in a tidy format.

Examples

Data

We use the dataset provided with the package, wsiData, to illustrate a typical analysis. This dataset is a
publicly available high-throughput genomic dataset (Buhlmann et al. (2014)) providing gene expression levels
and the rate of riboflavin production with Bacillus subtilis for 71 individuals. The data comprises 4088 gene
expression levels and the logarithm of the riboflavin production rate (3q RRIBFLC).

The data can be loaded in the usual way

data(wsiData)

dim(wsiData)

[1] 71 4089

Consider the summary statistics of only the outcome

summary (wsiData$q_RIBFLC)

Min. 1st Qu. Median Mean 3rd Qu. Max.
-9.966 -7.688 -6.948 -7.159 -6.449 -5.673

We see that the range of the logarithm of the riboflavin production rate, y, is -9.9658 < y < -5.673. The
range of the gene expression levels, ¢, is 3.3228 < ¢ < 14.3896.

summary (c(data.matrix(wsiDatal[,-1L])))

Min. 1st Qu. Median Mean 3rd Qu. Max.
3.323 6.946 7.665 7.669 8.352 14.390

P-values

We first obtain the test statistics using marginal regression

dm <- data.matrix(frame = wsiData)
pval <- apply(X = dm[,-1L],
MARGIN = 2L,
FUN = function(x,y) {
summary (object = lm(formula = y~x))$coef [2L,4L]
Y

y = dm[,1L])

p <- length(x = pval)

Next, we obtain 1000 sets of samples from the null distribution and their corresponding p-values

n <- 1000L

sig <- stats::cor(x = dm[,-1L])

zz <- MASS::mvrnorm(n = n, mu = rep(x = 0.0, times = p), Sigma = sig)
pval_null <- t(x = {1.0 - stats::pnorm(q = abs(x = zz))1}*2.0)

where we have transposed the p-value matrix to put it into the expected input format.

Though our data is not of sufficient dimension to warrant the use of more memory efficient storage and access,
we will define variables of class “big.matrix” and “ff_matrix” for illustration purposes.

pval_nullBM <- as.big.matrix(pval_null, type = "double")
pval_nullFF <- ff(vmode = "double", dim = c(p,n), pval_null)

cSeq()

The first step of the framework is to estimate the bounding sequences. We will set o« = 0.2.

Using the standard R “matrix” object, the call takes the form
cs <- cSeq(pval_null = pval_null, alpha = 0.2)

estimating bounding sequence using 1000 samples, each containing 4088 variables

A message is generated indicating the number of samples (n) and variables (p). An S3 object of class “wsiHD”
comprising a list object is returned with element $c05 and $cl.
cs

Bounding Sequences
c05: 0.3165
cl: 0.9809

For the “big.matrix” and “ff_matrix” objects,

cSeq(pval_null = pval_nullBM, alpha = 0.2)

estimating bounding sequence using 1000 samples, each containing 4088 variables

Bounding Sequences
c05: 0.3166
cl: 0.9809

cSeq(pval_null = pval_nullFF, alpha = 0.2)

estimating bounding sequence using 1000 samples, each containing 4088 variables

Bounding Sequences
c05: 0.3164
#it cl: 0.9809

yield similar return objects. Notice, however, that the estimates are not identical. Any differences are due to
the algorithm used to obtain the (1 — a))-th quantile. In base R, there are nine algorithms available to obtain
quantiles. We have opted to use the default algorithm in this implementation. However, this default algorithm
is not the same as that implemented by Armadillo (the underpinnings for the “big.matrix” implementation),

which uses type = 5, nor that of ff, which uses type = 1. Thus, estimates of the bounding sequences might
differ slightly for inputs of different classes but with equivalent p-values. For large p, any differences will be
very small.

signalProp()

The second step of the framework is to use the estimated bounding sequences to obtain the estimated signal
proportion.

piHat <- signalProp(pval = pval, c05 = cs$c05, cl = cs$cl)

An S3 object of class “wsiHD” comprising a list object is returned containing # ($piHat), #g.5 ($piHat05),
and 71 ($piHatl).

piHat

Signal Proportions

piHat: 0.0978
piHat05: 0.0791
#it piHatl: 0.0978

These results can be equivalently obtained using a slightly different input structure. Namely,

signalProp(pval = pval, pval_null = pval_null, alpha = 0.2)

estimating bounding sequence using 1000 samples, each containing 4088 variables

Bounding Sequences
c05: 0.3165
cl: 0.9809
Signal Proportions

piHat: 0.0978
#it piHat05: 0.0791
piHatl: 0.0978

Here we see that the bounding sequences were estimated internally and are returned through the value object.

Again, we see that using the alternative input classes leads to slightly different results due to the underlying
quantile algorithms.

signalProp(pval = pval, pval_null = pval_nullBM, alpha = 0.2)

estimating bounding sequence using 1000 samples, each containing 4088 variables

Bounding Sequences
c05: 0.3166
#it cl: 0.9809
Signal Proportions

piHat: 0.0978
#i# piHat05: 0.0791
piHatl: 0.0978

signalProp(pval = pval, pval_null = pval_nullFF, alpha = 0.2)

estimating bounding sequence using 1000 samples, each containing 4088 variables

Bounding Sequences
c05: 0.3164

#i# cl: 0.9809
Signal Proportions

#it piHat: 0.0978
piHat05: 0.0792
piHatl: 0.0978
fnpOpt()

The final step of the framework is to use the estimated signal proportion to obtain the estimated number of
signal variables and then estimate the FNP. We will take 8 = 0.1 in this example.

sHat <- ceiling(x = p+*piHat$piHat)
fnp <- fnpOpt(pval = pval, beta = 0.1, sHat = sHat)

An S3 object of class “wsiHD” comprising a list object is returned containing $ind, the rank satisfying the
threshold condition; $pvalue, the maximum p-value for the variables that satisfy the threshold condition; and
$FNP, the estimated FNP for all variables. Note that the class of the $FNP element will depend on the class
input pval.

fnp

Number of Signals: 398

max p-value: 0.01049627

Summary of FNP:

Min. 1st Qu. Median Mean 3rd Qu. Max.
0.00000 0.00000 0.00000 0.05199 0.00000 0.99750

Though the full p-dimensional vector of FNP is returned, the print function only displays the summary
statistics.

Similar in spirit to the signalProp() function, these results can be equivalently obtained using a slightly
different input structure. Namely,

fnpOpt (pval = pval, pval_null = pval_null, beta = 0.1, alpha = 0.2)

estimating bounding sequence using 1000 samples, each containing 4088 variables

Bounding Sequences
c05: 0.3165
cl: 0.9809
Signal Proportions

#i# piHat: 0.0978
piHat05: 0.0791
#it piHatl: 0.0978

Number of Signals: 398

max p-value: 0.01049627

Summary of FNP:

Min. 1st Qu. Median Mean 3rd Qu. Max.
0.00000 0.00000 0.00000 0.05199 0.00000 0.99750

Here we see that the bounding sequences were estimated internally as well as the estimated signal proportions.
These are returned through the value object.

And using the alternative input classes

fnpOpt(pval = pval, pval_null = pval_nullBM, beta = 0.1, alpha = 0.2)

estimating bounding sequence using 1000 samples, each containing 4088 variables

Bounding Sequences
c05: 0.3166
cl: 0.9809
Signal Proportions

#i# piHat: 0.0978
#it piHat05: 0.0791
piHatl: 0.0978

Number of Signals: 398

max p-value: 0.01049627

Summary of FNP:

Min. 1st Qu. Median Mean 3rd Qu. Max.
0.00000 0.00000 0.00000 0.05199 0.00000 0.99750

fnpOpt (pval = pval, pval_null = pval_nullFF, beta = 0.1, alpha = 0.2)

estimating bounding sequence using 1000 samples, each containing 4088 variables

Bounding Sequences
c05: 0.3164
cl: 0.9809
Signal Proportions

#i# piHat: 0.0978
piHat05: 0.0792
#it piHatl: 0.0978

Number of Signals: 398

max p-value: 0.01049627

Summary of FNP:

Min. 1st Qu. Median Mean 3rd Qu. Max.
0.00000 0.00000 0.00000 0.05199 0.00000 0.99750

References

Jeng, X. J. and Hu, Y. (2021). Weak signal inference under dependence and sparsity, submitted.

Jeng, X. J. (2021). Estimating the proportion of signal variables under arbitrary covariance dependence.
<arXiv:2102.09053>.

Buhlmann, P.; Kalisch, M. and Meier, L. (2014). High-Dimensional statistics with a view toward applications
in Biology. Annual Review of Statistics and Its Application, 1, 255-278.

	Introduction
	Functions
	cSeq()
	signalProp()
	fnpOpt()
	 print()

	Examples
	Data
	P-values
	 cSeq()
	 signalProp()
	 fnpOpt()

	References

