R/SpecInciJack2.R

SpecInciJack2 <-
function(data, k, conf){
  data <- as.numeric(data)
  z <- -qnorm((1 - conf)/2)
  t <- data[1]
  dat <- data[-1]
  x <- dat[which(dat != 0)]
  Q <- function(i, data){length(data[which(data == i)])}
  
  basicInci <- function(data, k){
    data <- as.numeric(data)
    t <- data[1]
    dat <- data[-1]
    x <- dat[which(dat != 0)]
    Q <- function(i, data){length(data[which(data == i)])}
    
    D <- length(x)
    D_infreq <- length(x[which(x <= k)])
    
    if (Q(1, x) > 0 & Q(2, x) > 0){
      A <- 2*Q(2, x)/((t-1)*Q(1, x) + 2*Q(2, x))
    } else if (Q(1, x) > 0 & Q(2, x) == 0){
      A <- 2/((t-1)*(Q(1, x) - 1) + 2)
    } else {
      A <- 1
    }
    C_infreq <- 1 - Q(1, x)/sum(x[which(x <= k)])*(1-A)
    
    j <- c(1:k)
    b1 <- sum(sapply(j, function(j)j*(j-1)*Q(j, x)))
    b2 <- sum(sapply(j, function(j)j*Q(j, x)))
    gamma_infreq_square <- max(D_infreq/C_infreq*t/(t - 1)*b1/b2/(b2) - 1, 0)
    CV_infreq <- sqrt(gamma_infreq_square)
    D_freq <- length(x[which(x > k)])
    
    BASIC.DATA <- matrix(paste(c("D", "t", "k", "D_infreq", "C_infreq", "CV_infreq", "D_freq"),
                               c(D,t,k,D_infreq,C_infreq,CV_infreq,D_freq),
                               sep = "="), ncol=1)
    colnames(BASIC.DATA)=c("Value")
    rownames(BASIC.DATA)=c("Number of observed species","Number of sample/quadrats","Cut-off point",
                           "Number of observed species for infrequent species","Estimated sample coverage for infrequent species",
                           "Estimated CV for infrequent species",
                           "Number of observed species for frequent species")
    return(list(BASIC.DATA, D, t, D_infreq, C_infreq, CV_infreq, D_freq))
  }
  D <- basicInci(data, k)[[2]]
  D_infreq <- basicInci(data, k)[[4]]
  C_infreq <- basicInci(data, k)[[5]]
  CV_infreq <- basicInci(data, k)[[6]]
  D_freq <- basicInci(data, k)[[7]]
  
  S_2nd_JK <- function(x,k){
    x <- x[which(x != 0)]
    s_2nd_jk <- D + (2*t - 3)/t*Q(1, x) - (t - 2)^2/t/(t - 1)*Q(2, x)
    return(s_2nd_jk)
  } 
  s_2nd_jk <- S_2nd_JK(x, k)
  #### differential ####
  diff <- function(q){
    if ( q == 1){
      d <- 1 + (2*t - 3)/t
    } else if (q == 2){
      d <- 1 - (t-2)^2/t/(t-1)
    } else {
      d <- 1
    }
    return(d)
  }
  
  COV.q <- function(i,j){
    if (i == j){
      cov.q <- Q(i, x)*(1 - Q(i, x)/S_2nd_JK(x, k))
    } else {
      cov.q <- -Q(i, x)*Q(j, x)/S_2nd_JK(x, k)
    }     
    return(cov.q)
  }
  
  i <- rep(sort(unique(x)), each = length(unique(x)))
  j <- rep(sort(unique(x)), length(unique(x)))       # all combination
  
  var_2nd <- sum(mapply(function(i, j)diff(i)*diff(j)*COV.q(i, j), i, j))
  if (var_2nd > 0){
    var_2nd <- var_2nd
  } else {
    var_2nd <- NA
    cat("Warning: In this case, it can't estimate the variance of 2nd-order-jackknife estimation", "\n\n")
  }
  ######################
  if (round(s_2nd_jk - D, 5) != 0){
    C <- exp(z*sqrt(log(1+var_2nd/(s_2nd_jk-D)^2)))
    CI_2nd_jk <- c(D + (s_2nd_jk - D)/C, D + (s_2nd_jk - D)*C)
  } else {
    i <- c(1:max(x))
    pos <- i[unique(x)]
    P <- sum(sapply(i, function(i)Q(i,x)*exp( - i)/D))
    CI_2nd_jk <- c(max(D, D/(1 - P) - z*sqrt(var_2nd)/(1 - P)), D/(1 - P) + z*sqrt(var_2nd)/(1 - P))  
  }
  table <- matrix(c(s_2nd_jk, sqrt(var_2nd), CI_2nd_jk), ncol = 4)
  colnames(table) <- c("Estimate", "Est_s.e.", paste(conf*100,"% Lower Bound"), paste(conf*100,"% Upper Bound"))
  rownames(table) <- "2nd order jackknife"
  return(table)
  
}
JohnsonHsieh/ChaoSpecies documentation built on May 7, 2019, 12:02 p.m.