README.md

CM

This package provides functionality to implement latent conjugate multivariate models for non-Gaussian data.

For examples of how to use the package, please see the help files. Please note that CM is under active development.

References

Bradley, JR, Holan, SH, and Wikle, CK. (2020). Bayesian Hierarchical Models with Conjugate Full-Conditional Distributions for Dependent Data from the Natural Exponential Family. Journal of the American Statistical Association. 115: 2037-2052.

Bradley, JR, Wikle, CK, and Holan, SH. (2019). Spatio-Temporal Models for Big Multinomial Data using the Conditional Multivariate Logit-Beta Distribution. Journal of Time Series Analysis. 40: 363 - 382.

Bradley, JR, Holan, SH, and Wikle, CK. (2018). Computationally Efficient Distribution Theory for Bayesian Inference of High-Dimensional Dependent Count-Valued Data (with discussion). Bayesian Analysis. 13: 253 - 302. Rejoinder: 302 - 310.

Hu, G, Bradley, JR. (2018). A Bayesian Spatio-Temporal Model for Analyzing Earthquake Magnitudes. Stat. 7(1): e179.

Xu, Z, Bradley, JR, Sinha, D. (2019) Latent Multivariate Log-Gamma Models for High-Dimensional Multi-Type Survival Data with Application to Cancer Mapping. arXiv: 1909.02528.

Bradley, JR, (2021+). Joint Bayesian Analysis of Multiple Response-Types Using the Hierarchical Generalized Transformation Model. Bayesian Analysis.

Installation

#install.packages("devtools",dependencies=TRUE) #install devtools from CRAN
#library(devtools) #load devtools
#install_github("hadley/devtools")#install devtools from Github
library(devtools)
install_github("JonathanBradley28/CM")
library(CM)

Examples

The help files contain small simulation examples. For example, if you type help(GibbsPoissonMLG) or ??GibbsPoissonMLG, the help file will contain the following code.

set.seed(123)
#define a test function
#A non-linear test function
lambda <- function(t) exp(1.1 + sin(2 * pi * t))

#define some 1-d locations
points = seq(0,1,length.out=1001)
points=points[2:1001]
m = dim(as.matrix(points))[1]

#get the true mean at these locations
truemean<-matrix(0,m,1)
for (j in 1:length(points)){
  truemean[j,1] = lambda(points[j])
}

#simulate the data
data = matrix(0,m,1)
for (i in 1:m){
  data[i] = rpois(1,truemean[i])
}

#see how many zeros there are
sum(data==0)

#plot the data
plot(data,xlab="time",ylab="Poisson counts",main="Counts vs. time")

#covariate intercept-only
X = matrix(1,m,1)
p <- dim(X)[2]

##compute the basis function matrix
#compute thin-plate splines
r = 8
knots = seq(0,1,length.out=r)
#orthogonalize G
G = THINSp(as.matrix(points,m,1),as.matrix(knots,r,1))
outG<-qr(G)
G<-qr.Q(outG)
#orthogonalize X
outX<-qr(X)
X<-qr.Q(outX)

#Run the MCMC algorithm
output<-GibbsPoissonMLG(Niter=2000,X,G,data)

Peform MCMC diagnostics using the R package "code." Note that alpha_delta does not mix well. Of course, one could thin the MCMC to reduce autocorrelation, however, we choose not to. See MacEachern and Berliner (1994) for a discussion on thinning Markov chains.

#trace plots (without burnin)
plot(as.mcmc(output$betas[1000:2000]))
plot(as.mcmc(output$etas[1,1000:2000]))
plot(as.mcmc(output$etas[8,1000:2000]))
plot(as.mcmc(output$deltas[10,1000:2000]))
plot(as.mcmc(output$alpha_eta[1,1000:2000]))
plot(as.mcmc(output$alpha_delta[1,1000:2000]))


#estimates (remove a burnin)
lambda_est = apply(output$lambda_rep[,1000:2000],1,mean)
lambda_lower= apply(output$lambda_rep[,1000:2000],1,quantile,0.025)
lambda_upper= apply(output$lambda_rep[,1000:2000],1,quantile,0.975)


#plot estimates and truth
plot(1:m,truemean,ylim = c(0,max(lambda_upper)+1))
lines(1:m,lambda_est,col="red")
lines(1:m,lambda_lower,col="blue")
lines(1:m,lambda_upper,col="blue")

#smooth estimates (remove a burnin)
lambda_est = apply(output$lambda_rep_smooth[,1000:2000],1,mean)
lambda_lower= apply(output$lambda_rep_smooth[,1000:2000],1,quantile,0.025)
lambda_upper= apply(output$lambda_rep_smooth[,1000:2000],1,quantile,0.975)

#plot smooth estimates and truth
plot(1:m,truemean,ylim = c(0,max(lambda_upper)+1))
lines(1:m,lambda_est,col="red")
lines(1:m,lambda_lower,col="blue")
lines(1:m,lambda_upper,col="blue")


covmat = matrix(0,1000,1000)
for (jj in 1:1000){
  covmat = covmat+(output$lambda_rep[,1000+jj] - lambda_est)%*%t((output$lambda_rep[,1000+jj] - lambda_est))/1000
  print(jj)
}
vars = 1/sqrt(diag(covmat))
corrmat= diag(vars)%*%covmat%*% diag(vars)
image(corrmat)

To access examples for dependent Gaussian, dependent binomial, dependent Bernoulli, dependent multinomial, correlated Weibull and Poisson data, and correlated normal, Poisson, and binomial data, copy and paste from the help files

help(GibbsNormalGAU)
help(GibbsBinomialMLB)
help(GibbsBernoulliMLB)
help(GibbsMultinomialMLB)
help(WAP)
help(BTransform)


JonathanBradley28/CM documentation built on July 8, 2021, 9:59 a.m.