# read saved models
load(here::here("analysis", "data", "derived_data", "burial_bergm_model.RData"))
library(cowplot)
library(Bergm)
# get data from pre-European model
pre_bergm_stats <- as.data.frame(pre_bergm$Theta)
colnames(pre_bergm_stats) <- pre_bergm$specs
pre_bergm_stats <-
cbind(pre_bergm_stats, phase = "pre") %>%
rename("gwesp" = "gwesp.fixed.0.4") %>% #gwnsp" = "gwnsp.fixed.0.4
rename("dyadcov.dist" = "dyadcov.pre_distance_n.dist")
# get data from post-European model
post_bergm_stats <- as.data.frame(post_bergm$Theta)
colnames(post_bergm_stats) <- post_bergm$specs
post_bergm_stats <-
cbind(post_bergm_stats, phase = "post") %>%
rename(gwesp = gwesp.fixed.1.2,
dyadcov.dist = dyadcov.post_distance_n.dist) #gwnsp" = "gwnsp.fixed.1.2
bergm_two_phases <-
rbind(pre_bergm_stats, post_bergm_stats) %>%
rename(gwdeg = gwdeg.fixed.0.5,
`dyadcov.distance` = dyadcov.dist,
nodematch.ritual = nodematch.ritual_pottery,
nodematch.value = nodematch.value_class)
# histogram of posterior distribution for both phases
edges_value <-
ggplot(bergm_two_phases,
aes(x = edges, fill = phase)) +
geom_histogram(alpha = 0.8, position = "identity",
binwidth = 0.25) +
theme_minimal()
trans_value <-
ggplot(bergm_two_phases,
aes(x = gwesp, fill = phase)) +
geom_histogram(alpha = 0.8, position = "identity",
binwidth = 0.25) +
theme_minimal()
degree_value <-
ggplot(bergm_two_phases,
aes(x = gwdeg, fill = phase)) +
geom_histogram(alpha = 0.8, position = "identity",
binwidth = 0.5) +
theme_minimal()
dist_value <-
ggplot(bergm_two_phases,
aes(x = dyadcov.distance, fill = phase)) +
geom_histogram(alpha = 0.8, position = "identity",
binwidth = 0.004) +
theme_minimal()
# plot them together
histogram <-
plot_grid(edges_value,
trans_value,
degree_value,
dist_value)
# density plots for posterior distribution
bergm_two_phases_longer <-
bergm_two_phases %>%
select(edges, gwesp, gwdeg, dyadcov.distance, phase) %>%
mutate(phase = case_when(
phase == "pre" ~ "pre-European",
phase == "post" ~ "post-European",
TRUE ~ "")) %>%
rename(transitivity = gwesp,
centralization = gwdeg,
"physical distance" = dyadcov.distance) %>%
pivot_longer(!phase, names_to = "parameter", values_to = "posterior") %>%
mutate(parameter = factor(parameter,
levels=c("edges",
"transitivity",
"centralization",
"physical distance")))
# Figure 5
density_posterior_facet <-
ggplot(bergm_two_phases_longer,
aes(x = posterior, fill = phase))+
geom_density(color = NA, alpha= 0.8) +
facet_wrap(~parameter, scales = "free") +
theme_minimal()
ggsave(here::here("analysis", "figures", "006-posterior-distribution.png"), w = 8, h = 5)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.