test_that("seMIsup itself", {
data(diabetic, package = "survival")
expect_equal(
length(seMIsupcox(Impute = TRUE, center.init.N = 20,
X = list(diabetic[, c(3,5:8)]),
Y = diabetic[, c("time", "status")],
nfolds = 10,
center.init = TRUE, return.detail = TRUE)),
3
)
expect_equal(
length(seMIsupcox(Impute = TRUE, Impute.m = 1, center.init.N = 20,
X = list(diabetic[, c(3,5:8)]),
Y = diabetic[, c("time", "status")],
nfolds = 10,
center.init = TRUE)[[1]]),
dim(diabetic)[1]
)
imp <- MImpute_surv(diabetic[, c(3,5:8)], 3)
expect_error(
seMIsupcox(X = imp,
Y = diabetic[, c("time", "status")],
nfolds = 10,
center.init = FALSE, return.detail = TRUE)
)
expect_equal(
length(
seMIsupcox(
X = imp,
Impute = FALSE, nfolds = 10,
Unsup.Sup.relImp = list("E.55" = c(.5, .5),
"E.46" = c(.4, .6),
"E.64" = c(.6, .4)),
Y = diabetic[, c("time", "status")],
center.init.N = 20
)
),
3
)
ks <- sample(2:6, size = 20, replace = TRUE)
expect_equal(
length(seMIsupcox(X = imp, Impute = FALSE, nfolds = 10,
center.init = sapply(1:length(imp), function(mi.i) {
initiate_centers(data = imp[[mi.i]][, 1:3],
N = 20, t = 1, k = ks)},
USE.NAMES = TRUE, simplify = FALSE),
Y = diabetic[, c("time", "status")],
center.init.N = 20)[[1]]),
dim(diabetic)[1]
)
expect_equal(
length(
suppressWarnings(
initiate_centers(
data = iris[, 1:4], N = 10, t = .5,
k = sample(2:6, size = 10, replace = TRUE),
algorithms = sample(c("km", "hclust.mean", "hclust.med", "kmed"),
size = 10*.5, replace = TRUE)
))),
10)
expect_equal(
length(
suppressWarnings(
initiate_centers(
data = iris[, 1:4], N = 10, t = 0,
k = sample(2:6, size = 10, replace = TRUE),
algorithms = sample(c("km", "hclust.mean", "hclust.med"),
size = 10, replace = TRUE)
))),
10)
expect_equal(
dim(exctract_center_position(iris[, 1], as.numeric(iris[, 5]), "colMeans")),
c(3,1)
)
})
test_that("Evaluation of partitions", {
data(diabetic, package = "survival")
part <- seMIsupcox(Impute = TRUE, center.init.N = 5,
X = list(diabetic[, c(3,5:8)]),
Y = diabetic[, c("time", "status")],
nfolds = 10,
center.init = TRUE)[[1]]
part2 <- seMIsupcox(Impute = TRUE, center.init.N = 5,
X = list(diabetic[, c(3,5:8)]),
Y = diabetic[, c("time", "status")],
nfolds = 10,
center.init = TRUE)[[1]]
library(survival, quietly = TRUE)
if (requireNamespace("CPE")) {
expect_equal(length(
evaluate_partition_semisup(part,
part2,
part,
part,
data.surv = diabetic[, c("time", "status")],
TMIN = 50, TMAX = 60)), 22)
}
})
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.