test_that("Partition sorting based on Jaccard index works correctly",
{
expect_equal(my_jack(iris, 0), iris)
expect_equal(my_jack(iris[,c(1,1,1)], 0), TRUE)
expect_equal(my_jack(iris, 0.7), FALSE)
expect_error(my_jack(iris[,1], 0.1))
})
test_that("UnsupMI it self", {
expect_equal(
dim(
unsupMI(data = list(airquality), log.data = TRUE, Impute = "MImpute")
),
c(dim(airquality)[1], 1))
expect_equal(
dim(
unsupMI(data = list(airquality), Impute = "MImpute", Impute.m = 1)
),
c(dim(airquality)[1], 1))
airquality2 <- airquality
airqualitycens <- airquality
airquality2$Temp[airquality$Temp <= 72] <- NA
airqualitycens$Temp[airquality$Ozone <= 72] <- 72
airqualitycens$Temp[is.na(airqualitycens$Temp)] <- 90
expect_equal(
dim(
unsupMI(data = list(airquality2), Impute = "MImpute_lcens",
cens.data.lod = data.frame(Temp = airqualitycens$Temp),
cens.standards = data.frame(Temp = 72),
cens.mice.log = FALSE)
),
c(dim(airquality)[1], 1))
airquality2 <- airquality
airqualitycens <- log(airquality)
airqualitycens[is.na(airqualitycens)] <- 4
airquality2$Temp[airquality$Temp <= 72] <- NA
airqualitycens$Temp[airquality$Ozone <= 72] <- round(log(72), 10)
airqualitycens$Temp[is.na(airqualitycens$Temp)] <- 90
expect_equal(
length(
suppressWarnings(
unsupMI(data = list(airquality2), Impute = "MImpute_lcens",
cens.data.lod = data.frame(Temp = airqualitycens$Temp),
cens.standards = data.frame(Temp = 72),
cens.mice.log = 10, return.detail = TRUE)
)),
3)
data(diabetic, package = "survival")
expect_equal(
dim(
unsupMI(data = list(diabetic[, c(3,5:8)]), Impute = "MImpute_surv")
),
c(dim(diabetic)[1], 1)
)
expect_equal(
dim(
unsupMI(data = list(airquality),
Impute = "MImpute",
algo = c("km", "hc"),
comb.cons = TRUE)
),
c(dim(airquality)[1], 3))
expect_equal(
length(
unsupMI(data = list(airquality),
Impute = "MImpute",
algo = c("km", "hc"),
return.detail = TRUE)
),
3)
expect_equal(
length(
unsupMI(data = list(airquality),
Impute = "MImpute",
return.detail = TRUE)
),
3)
expect_equal(
dim(
unsupMI(data = list(airquality),
Impute = "MImpute",
not.to.use = "Ozone")
),
c(dim(airquality)[1], 1))
expect_equal(
dim(
unsupMI(data = MImpute(airquality, 3), Impute = FALSE)
),
c(dim(airquality)[1], 1))
expect_equal(
dim(
unsupMI(data = list(airquality), Impute = "MImpute", k.crit = "CritCF")
),
c(dim(airquality)[1], 1))
})
test_that("Evaluation of partitions", {
expect_equal(length(
evaluate_partition_unsup(unsupMI(data = list(airquality),
Impute = "MImpute", Impute.m = 4),
factor(airquality$Month))), 10)
expect_equal(length(
evaluate_partition_unsup(unsupMI(data = list(airquality),
Impute = "MImpute"),
factor(airquality$Month),
is.missing = !complete.cases(airquality),
is.cens = rep(FALSE, nrow(airquality)))), 10)
expect_equal(length(
evaluate_partition_unsup(rep(NA, nrow(airquality)),
factor(airquality$Month))), 10)
})
test_that("Plot works", {
imp <- MImpute(airquality, 3)
expect_error(plot_MIpca(imp, NULL, pc.sel = 1))
expect_error(plot_MIpca(imp, NULL, pc.sel = c("A", "B")))
expect_error(plot_MIpca(imp, NULL, pc.sel = c(1, 7)))
expect_s3_class(plot_MIpca(imp, 1:10, color.var = airquality$Month == 6),
"ggplot")
expect_s3_class(plot_MIpca(imp,
NULL,
pca.varsel = c("Ozone", "Solar.R", "Wind")),
"ggplot")
expect_s3_class(plot_MIpca(imp,
"DATA$Month<6",
color.var = "none",
pc.sel = c(3,4)),
"ggplot")
expect_s3_class(plot_MIpca(imp, 1:10, color.var = NULL),
"ggplot")
imp2 <- lapply(MImpute(airquality, 3), function(x){rownames(x) <- NULL ; x})
expect_s3_class(plot_MIpca(imp2, 1:10),
"ggplot")
expect_error(plot_MIpca_all(imp, NULL, pc.sel = 1))
expect_error(plot_MIpca_all(imp, NULL, pc.sel = c("A", "B")))
expect_error(plot_MIpca_all(imp, NULL, pc.sel = c(1, 7)))
expect_s3_class(plot_MIpca_all(imp, 1:10, color.var = airquality$Month == 6),
"ggplot")
expect_s3_class(plot_MIpca_all(imp,
NULL,
pca.varsel = c("Ozone", "Solar.R", "Wind")),
"ggplot")
expect_s3_class(plot_MIpca_all(imp,
"DATA$Month<6",
color.var = "none",
pc.sel = c(3,4)),
"ggplot")
expect_s3_class(plot_MIpca_all(imp, 1:10, color.var = NULL, alpha = .6),
"ggplot")
expect_s3_class(plot_MIpca_all(imp2, 1:10), "ggplot")
expect_s3_class(plot_boxplot(data = iris, partition.name = "Species",
vars.cont = colnames(iris)[1:4]),
"ggplot")
expect_s3_class(plot_boxplot(data = iris, partition.name = "Species",
vars.cont = colnames(iris)[1:4],
vars.cont.names = paste("X", 1:4),
unclass.name = "virginica",
include.unclass = TRUE, add.n = TRUE),
"ggplot")
expect_s3_class(plot_boxplot(data = iris, partition.name = "Species",
vars.cont = colnames(iris)[1:4],
vars.cont.names = paste("X", 1:4),
unclass.name = "virginica",
include.unclass = FALSE),
"ggplot")
expect_s3_class(plot_boxplot(data = iris, partition.name = "Species",
vars.cont = colnames(iris)[1:4],
vars.cont.names = paste("X", 1:4),
unclass.name = NA, include.unclass = TRUE,
add.n = TRUE),
"ggplot")
data(diabetic, package = "survival")
expect_s3_class(plot_frequency(data = diabetic, partition.name = "status",
vars.cat = c("laser", "trt", "eye")), "ggplot")
expect_s3_class(plot_frequency(data = diabetic, partition.name = "status",
binary.simplify = FALSE,
unclass.name = NA,
include.unclass = TRUE,
vars.cat = c("laser", "trt", "eye"),
vars.cat.names = c("Laser", "Trait.", "Eye")),
"ggplot")
})
test_that("multiCOns",{
if (requireNamespace("mclust")){
suppressWarnings(library(mclust, quietly = TRUE, verbose = FALSE))
expect_equal(
length(
MultiCons(iris[, 1:4],
Clustering_selection = c("kmeans", "pam", "OPTICS")
)), 2)
expect_equal(
length(
MultiCons(iris[, 1:4],
Clustering_selection = c("agghc", "AGNES", "DIANA")
)), 2)
expect_equal(
length(
MultiCons(iris[, 1:4],
Clustering_selection = c("MCLUST", "CMeans",
"FANNY", "BaggedClust"),
num_algo = 13
)), 2)
expect_equal(
length(
MultiCons(iris[, 1:4], Plot = FALSE, returnAll = TRUE
)), 2)
}
})
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.