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1 Overview
> library(PRECISE)

This vignette describes how to use R/PRECISE to estimate cancer-specific inte-
grated networks, infer patient-specific networks and elicit interpretable pathway-
level signatures.

2 An example: TCGA KIRC data

We illustrate the usage of PRECISE package using TCGA KIRC data. We
require two types of input data: (1) data- proteomic data and other (upstream)
molecular profiles (e.g., gene expression, microRNA expression, DNA methyla-
tion) and (2) prior information- known pathway annotations and PPIs.

2.1 Input Data

We consider 12 key signaling pathways for TCGA RPPA data (Akbani, R.
et al., Nature communications, 2014).

> pw.array = c("Apoptosis", "Breast reactive","Cell cycle", "Core reactive"

+ , "DNA damage response","EMT","PI3K/AKT","RAS/MAPK","RTK"

+ , "TSC/mTOR", "Hormone receptor", "Hormone signaling (Breast)")
> length(pw.array)

[1] 12

We take “Apoptosis” pathway as an example and the RPPA data, “rppadat” is a
list file that includes the protein expression (RPPA) data for the TCGA KIRC
patients in the order of the “pw.array”.

> data(rppadat)
> length(rppadat)



(1] 12

> RPPAdat = rppadat[[1]] # RPPA data for Apoptosis pathway
> dim(RPPAdat)

[1] 469 9

The RPPA data for apoptosis pathway includes 9 genes for 469 TCGA KIRC
patients.

2.1.1 Prior calibration and causal structure learning

To decide prior probabilities for protein regulators, we estimate the cancer-
specific protein (weighted) causal network that determines the protein regula-
tors by the directions of the edges and the contribution to the target proteins
by the the weights of the edges. Using RPPA data in each cancer type and each
pathway, we construct the weighted causal structure of proteins using the PC
algorithm (Kalisch, M. & Buhlmann, P. J Mach Learn Res, 2007) which relies
on conditional independence tests with a certain significance level ae. The causal
structure is represented by a graph with directed (— or +) or bi-directed (+)
edges. A bi-directed edge means that the direction is not identifiable from the
data. In this analysis, we chose a relatively large vaule of the tuning parameter,
so that the resulting graph would include a large number of edges and the con-
fidence of those edges are measured by the weights obtained from investigating
the stability under a subsampleing procedure (Meinshausen, N. & Buhlmann,
P. J R Stat Soc B (2010)).

> p = ncol(RPPAdat)

> B=100

> alpha = 0.1

> alpha.array = seq(0.0001,0.1,length=100)

> #pcfit = fitPC(dat = RPPAdat,alpha=alpha,stable=TRUE

> #,alpha.array=alpha.array,B=B,labels=as.character(1:p),verbose=T)
> data(pcfit)

> pcfit = pcfit.list[[1]] # the fitPC result for Apoptosis pathway
> names (pcfit)

[1] "fig" "pcA" "pcSel" "pcmaxSel" "rownames"

The “fit” object includes the PC-algorithm result from the original protein data
using a = 0.1 and “pcmaxSel” includes maximum selection probabilities for all
three possible directions, A — B, A + B, and A < B and the “rownames”
object includes all edge names with A in the first column and B in the sec-
ond column. Then we make the results from the fitPC function into weighted
adjacency matrix as follows.

> adj.pc = as(pcfit$fit@graph, "matrix")
> addr = matrix(as.numeric(pcfit$rownames),ncol=2)
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addr.rev = cbind(addr/[,2],addr[,1])
adj.pcladdr] = adj.pcladdr] * pcfit$pcmaxSell[,1]
adj.pcladdr.rev] = adj.pcladdr.rev] * pcfit$pcmaxSell,2]

adj.pc

1 2 34 56 7 8 9
0 0.00 0.76 0 0.00 0 0.00 0.89 0
0 0.00 0.00 0 0.00 0 0.00 1.00 O
0 0.00 0.00 0 0.42 0 0.64 0.48 O
0 0.00 0.00 00.3300.730.910
0 0.00 0.00 0 0.00 0 0.00 0.00 O
0 0.44 0.40 0 0.00 0 0.00 0.00 O
0 0.00 0.00 0 0.00 0 0.00 0.00 O
0 0.00 0.00 0 0.00 0 0.00 0.00 O
0 0.00 0.00 0 0.00 0 0.00 0.96 O

For example, we have an edge node 6 — node 2 with the weight 0.44. We
use this weighted causal structure to determine the priors for the regression in
combination with the known PPIs (http://string-db.org).

>
>

data(ppi)
names (ppi)

[1] "pathwaydat" "ppi"

The pathwaydat object includes gene/protein membership of the 12 pathways
and ppi object includes the weights for PPIs from the String DB in each pathway.
The existing PPI scores are similarly transformed to weighted adjacency matrix
and combined with that from the denovo causal structure.

>
>
>
>
>
>
>
+
>
>
>
>
>
>
+
>
+

pw="Apoptosis"

genelist = strsplit(colnames(RPPAdat),split=", ")

membership = rep(1:p,lapply(genelist,length))

indigenes = unlist(genelist)

stringscore = ppi$ppil[which(names (ppi$ppi) == pw)]]

# select edges included in the RPPAdat

stringscore = stringscore[rowSums(cbind(as.numeric(stringscorel,1] 7inj, indigenes)

,as.numeric(stringscore[,2] Jinj, indigenes))) == 2,]

address = cbind(match(stringscorel[,1],indigenes),match(stringscorel[,2],indigenes))

adj.string = matrix(0,ncol=length(indigenes),nrow=1ength(indigenes))

adj.string[address] = as.numeric(stringscore[,3])/1000

adj.string.cl = matrix(0,nrow=max (membership),ncol=max (membership))

id = 1:length(membership)

w.off = rbind(which(upper.tri(adj.string.cl),arr.ind=T)

,which(lower.tri(adj.string.cl),arr.ind=T))

v.off = c(which(upper.tri(adj.string.cl),arr.ind=F)

,which(lower.tri(adj.string.cl),arr.ind=F))


http://string-db.org

> for (i in 1:nrow(w.off)) {

+ addrl = id[membership == w.off[i,1]]
+ addr2 = id[membership == w.off[i,2]]
+

+

>

adj.string.cl[v.off[i]] = mean(adj.string[addrl,addr2])
}
Gmat = adj.string.cl/2 + adj.pc/2 ### Make averages

2.1.2 Upstream Data

The upstream data, gene expression, miRNA expression, and DNA methy-
lation data are downloaded.

> data(mRNA)

> data(miRNA)

> data(Methylation)
> dim(mRNA$Data)

[1] 174 454

> dim(miRNA$Data)

[1] 296 454

> dim(Methylation$Data)
[1] 324 454

> head (mRNA$Des)

GeneSymbol EntrezID
[1,] "YWHAE" "7531"
[2,] "EIF4EBP1" "1978"
(3,] "TpP53BP1" "7158"

[4,] "ACACA" ngqn
[5’] "ACACB" ng3on
[6,] "AKT1" "207"

> head (miRNA$Des)

[1] "hsa-mir-185" "hsa-mir-586" "hsa-mir-5194"
[4] "hsa-mir-520h" "hsa-mir-17" "hsa-mir-106a"

> head(Methylation$Des)

REF GeneSymbol ChromosomeID CoordinateID
[1,] "cg21137823" "PRKCZ" " "1981270"
[2,] "cg25007680" "PARKT7" " "8021821"
[3,] "cgl9560758" "ERRFI1"  "1" "8086721"
[4,] "cg04508649" "MTOR" " "11249046"
[5,] "cg21223353" "MTOR" " "11249539"
[6,] "cg07029998" "MTOR" " "11322191"



Each of the data are obtained from TCGA Assembler (Zhu, Y. et al., Nature
methods, (2014)) includes Data and Des objects for data matrix (no. of features
x no. of samples) and the feature information, respectively. The Des will be
used for making covariate data for each of the 9 proteins by matching at the
gene-level.

2.2 Step 1: Bayesian estimation of integrated cancer-specific
networks

We aim to estimate integrated cancer-specific networks using Bayesian re-
gression methods on each of the proteins with other upstream molecular profiling
data. Before performing regressions for all proteins, we need to construct de-
sign matrices for each proteins by matching the samples and the features at the
gene-level across all data types. Matching samples are performed as follows.

data(rppasample) ## sample names for the KIRC RPPAdat

covsample = colnames (mRNA$Data)

intsample = intersect(covsample,rppasample)

RPPAdat = RPPAdat[match(intsample,rppasample),]

mRNA$Data = mRNA$Data[,match(intsample,covsample)]

miRNA$Data = miRNA$Data[,match(intsample,covsample)]
Methylation$Data = Methylation$Datal[,match(intsample, covsample)]
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To make the covariate data matrices, we match the features from miRNA and
methylation using the following annotation files.

data(anno.miRNA)

miRNAname = gsub("mir","miR",miRNA$Des)

anno.miRNA = anno.miRNA[anno.miRNA[,1]7in/miRNAname,c(7,1)]
## reduce the annotation file with microRNAs in the dataset
anno.miRNA[,2] = gsub("miR","mir",anno.miRNA[,2])
data(anno.methyl)
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We obtain RPPA response vectors and those corresponding covariate matrices
from mRNA, miRNA, methylation data and protein regulators from the prior
calibration in Section 2.1.1. Note that the gene expression data are decom-
posed into two parts modulated by DNA methylation and independent of DNA
methylation. Using the annotation files, upstream data and the prior weighted
causal structure for the proteins, we construct scaled response vectors and the
corresponding scaled covariate matrices.

> rownames (RPPAdat) = intsample

> if (!is.null (miRNA$Des))miRNA$Des = as.matrix(miRNA$Des)

> dat = getregcovDat(Gmat = Gmat,RPPAdat=RPPAdat,mRNA=mRNA,miRNA=miRNA

+ ,Methylation=Methylation,anno.miRNA=anno.miRNA, anno.methyl=anno.methyl)
> names (dat)

[1] "ylist" "Xlist"



> length(dat$ylist)
(11 9
> length(dat$Xlist)
(11 9

Using the input response vectors and covariate matrices for the 9 proteins in the
Apoptosis pathway and the prior weighted protein causal network, we perform
Bayesian model averaging for each of the proteins based on linear regression
models with Zellner’s g-prior on the regression coefficients and compute predic-
tive densities for each sample.

> bmsfit= getBMS(dat,Gmat)
> names (bmsfit)
[1] "outlist" "pdlist"

For each regression of a protein, its integrated cancer-specific regulators that
have edges directed toward the protein are defined by the proteins or other
upstream covariates that have a posterior inclusion probability greater than 0.5
(median probability model). Therefore, among proteins, the network includes
both directed regulatory edges - when regulator proteins of a protein are not
targets of the protein and correlative edges- where both proteins in a link are
regulators and targets. The KIRC-specific integrative Apoptosis network is
obtained by:

> nodes = names(dat$ylist)
> netfit = getPosteriors(bmsfit$outlist,nodes)
> names (netfit)

(11 "G" "intGlist"
The protein network adjusted by upstream covariates is as follows.

> netfit$G>0.5 # median probability model

BAK1  BAX  BID BCL2L11 CASP7 BAD BCL2 BCL2L1
BAK1 FALSE FALSE TRUE FALSE FALSE FALSE FALSE TRUE
BAX FALSE FALSE TRUE FALSE FALSE TRUE TRUE TRUE
BID TRUE TRUE FALSE FALSE FALSE TRUE TRUE TRUE
BCL2L11 FALSE FALSE FALSE  FALSE FALSE FALSE TRUE TRUE
CASP7  FALSE FALSE TRUE FALSE FALSE FALSE FALSE FALSE
BAD FALSE TRUE TRUE FALSE FALSE FALSE FALSE FALSE
BCL2 FALSE TRUE TRUE TRUE FALSE FALSE FALSE FALSE
BCL2L1 TRUE TRUE TRUE TRUE TRUE FALSE FALSE FALSE
BIRC2 TRUE FALSE FALSE FALSE FALSE FALSE FALSE TRUE



BIRC2

BAK1 TRUE
BAX TRUE
BID FALSE

BCL2L11 FALSE
CASP7  FALSE
BAD FALSE
BCL2 FALSE
BCL2L1  TRUE
BIRC2  FALSE

The posterior inclusion probabilities (PIPs) for upstream covariates are dis-
played

> length(netfit$intGlist)

(11 9

> nodes[1]

[1] "BAK1"

> netfit$intGlist[[1]] # the integrative network for nodes[1]
type gene

miRNA_hsa-mir-451 "miRNA" "hsa-mir-451"
miRNA_hsa-mir-363 "miRNA" "hsa-mir-363"

ME_BAK1 "ME" "BAK1"
NME_BAK1 "NME"  "BAK1"
pip

miRNA_hsa-mir-451 "0.453115618707226"
miRNA_hsa-mir-363 "0.0388620233601076"
ME_BAK1 "0.051000260789684"
NME_BAK1 "0.0771015898285164"

, where ME stands for gene expression modulated by DNA methylation and
NME is for gene expression independent of DNA methylation. Because all the
PIPs are less than 0.5, the posteior network include no upstream covariates for
BAK1 gene in the KIRC-specific integrative Apoptosis network.

2.3 Step 2: Constructing PRECISE (patient-specific) net-
works

A PRECISE network is the integrated cancer-specific network with patient-
specific labels on the nodes (proteins). Specifically, the activation statuses of the
nodes are evaluated by estimating the posteior predictive density of each protein
for each patient. To determine the activation status of a protein for a patient
, we computed the posterior probabilities of the protein to lie in the §-interval



around zero, to be greater than, or less than. Then, we decided whether a
protein is neutral, activated, or suppressed, depending on the maximum of the
three posterior probabilities. Thus, patients with the same tumor type have
different node labels, suppressed, neutral or activated while the structure of the
networks is the same.

> delta
> psNet

0.5
getPRECISE (bmsfit$outlist,bmsfit$pdlist,nodes,delta)

> names (psNet)
[1] "net" "net.status" "score.mat" "samplename"

The patient-specific node labels for the 9 proteins in the Apoptosis pathway are
stored in the “net” object with -1 (suppressed), 1 (activated) or 0 (neutral).

> dim(psNet$net)
[1] 454 9
> head(psNet$net)

(,11 [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9]

[1,] o -1 1 0 o -1 0 0 0
[2,] 0 0 1 -1 0 o -1 0 0
(3,1 -1 -1 0 0 0 0 o -1 0
(4,] -1 0 0 0 0 0 1 -1 0
(5,1 0 0 1 -1 0 1 0 1 0
(6,1 0 0 0 0 0 0 1 0 0

2.4 Step 3: Calibrating PRECISE (patient-specific) scores

To compute pathway activity scores for each patient, we derive summary
measures from the PRECISE networks obtained from the Step 2, indicating
that the entire pathway is suppressed, neutral or activated. These patient-
specifc pathway scores are weighted averages of the posterior probabilities for
suppressed, neutral, and activated statuses of proteins by the number of target
or correlative proteins. Therefore, hub proteins in the pathway, that excercise
more control over the network through higher target or correlative proteins are
given higher weights towards determining the cumulative network score.

> dim(psNet$score.mat)
[1] 454 3

> head(psNet$score.mat)



Netscore.pos Netscore.neg Netscore.neu

1 10.566950 11.
2 11.926841 12
3 6.417883 17.
4 8.859715 12
5 14.990619 6
6 10.927817 9

The score.mat object displays the three types of network scores for activated
(first column), suppressed (second column) and neutral (third column). For a
given pathway and each patient, the PRECISE pathway status- which indicates
that the pathway is suppressed, neutral, or activated for the patient, can be de-
cided by the statuses, activated, suppressed, or netrual that have the maximum
of the three types of pathway scores.

403292

.704271

548730

.678395
.416420
.869793

> length(psNet$net.status)

[1] 454
> head(psNet$net.stat

(1] 0 0-1 0 1 O

us)

16.
13.
14.
16.
12.
17.

02976
36889
03339
46189
59296
20239

> head(apply (psNet$score.mat,1,which.max))

[1] 332313
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