
glmnetGLR: Generalized Elastic Net Logistic

Regression

Alex Venzin, Landon Sego

March 4, 2014

This document is a short tutorial on how to use the glmnetGLR package.

This package was developed as an extension of the capabilities of the glmnet

package. This document is provided to guide you through the process of in-

stalling the R package, reading in the data, training the model, and then apply-

ing the model on other data. Note that the beta version of this package will only

install correctly on Unix based operating systems (mac OS, Unix, Linux, etc).

To install, access the terminal or command line and type “R CMD INSTALL

filepath glmnetGLR ” and hit the tab key to complete the filename. Now that

the package is installed, we can attach the package to the local environment.

> require(glmnetGLR)

This package was designed to build generalized classification models using

the elastic net algorithm. This tool was originally developed to automate the

process of determining the curation quality of proteomics samples for mass spec-

1

trometry. We will be using some of the data documented in [?] to demonstrate

how to train and use this tool. The elastic net regression model works as both

a classification method and a feature selection tool. It incorporates two reg-

ularization constraints to balance feature selection and model simplicity using

a combination of the ridge penalty (`2 normalization) and the lasso penalty

(`1 normalization). This generic model can be used whenever the classification

problem of interest can be decomposed into a binary decision (i.e., yes/no, 0/1,

good/bad, etc). The user needs to supply a handful of arguments to the train-

LLRC function. These arguments are the true class labels (truthLabels), the set

of predictor variables as the columns of a matrix or dataframe (predictors),

and the loss matrix (lossMat). Below we demonstrate how to use this function.

> # Load the VOrbitrap Shewanella QC data

> data(traindata)

> # Here are the first few observations of the datasets

> traindata[1:5, 1:7]

Instrument_Category Instrument Dataset_ID Acq_Time_Start Acq_Length

pt701 VOrbitrap VOrbiETD03 251690 12/31/2011 98

pt702 VOrbitrap VOrbiETD03 251706 1/1/2012 98

pt703 VOrbitrap VOrbiETD03 251887 1/4/2012 98

pt704 VOrbitrap VOrbiETD03 252361 1/10/2012 98

pt705 VOrbitrap VOrbiETD04 255284 2/2/2012 99

Dataset Dataset_Type

pt701 QC_Shew_11_06_col2A_30Dec11_Cougar_11-10-11 HMS-MSn

2

pt702 QC_Shew_11_06_col2C_30Dec11_Cougar_11-10-11 HMS-MSn

pt703 QC_Shew_11_06_Col2B_4Jan12_Cougar_11-10-11 HMS-MSn

pt704 QC_Shew_11_06_col1_9Jan12_Cougar_11-10-09 HMS-MSn

pt705 QC_Shew_11_06_Col1B_2Feb12_Cougar_11-10-09 HMS-MSn

> # Here we select the predictor variables

> predictors <- as.matrix(traindata[,9:96])

> # The logistic regression model requires a binary response

> # variable.

> resp <- traindata[,"response"]

> # Set the loss matrix

> lM <- lossMatrix(c("Good","Good","Poor","Poor"),

+ c("Good","Poor","Good","Poor"),

+ c(0, 1, 5, 0))

> # Train the elastic net classifier

> elasticNet <- trainGLR(truthLabels = resp,

+ predictors = predictors,

+ lossMat = lM)

The call to trainLLRC solves for the optimal parameter settings (α, λ, τ) that

minimize the expected loss for the elastic net logistic regression model. Keep in

mind that the α parameter governs the trade off between the two regularization

parameters. When α = 0, we are performing `2 normalization (ridge regression)

and when α = 1, we are performing `1 normalization (lasso regression).

3

> elasticNet

Top 10 optimal parameter values for the elastic net logistic regression fit:

ExpectedLoss alpha tau lambda sqErrorTau

1 0.2423077 0 0.80 0.7179983 0.0900

2 0.2430769 0 0.80 0.7880023 0.0900

3 0.2430769 0 0.80 0.6542133 0.0900

4 0.2453846 0 0.80 0.9491515 0.0900

5 0.2453846 0 0.80 0.8648315 0.0900

6 0.2461538 0 0.80 0.5960948 0.0900

7 0.2469231 0 0.80 0.5431394 0.0900

8 0.2484615 0 0.80 1.0416926 0.0900

9 0.2500000 0 0.80 1.1432564 0.0900

10 0.2500000 0 0.85 0.3108043 0.1225

Now that the classifier has been properly trained and the optimal parameters

have been identified, we are interested in making predictions for new data ob-

servations. To make predictions for a new set of observations, the user will need

the elastic net regression model (glmnetGLRobject) and the set of new observa-

tions to be predicted (newdata). Additionally, one may wish to carry through

a set of the predictor variables (keepCols) and the column of ground truth for

the classes if available (truthCol). Note that the ground truth is not required

to make predictions regarding the class of future observations, but is required

to compute the metrics for the elastic net logistic regression model.

4

> # load the data for testing

> data(testdata)

> prediction_values <- predict(glmnetGLRobject = elasticNet,

+ newdata = testdata,

+ truthCol = 'Curated_Quality',

+ keepCols = 12:14)

The code above will produce a data.frame object containing the value of

the predicted class and if specificed, the column of ground truth responses and

the variables to carry through during the prediction process in keepCols. Note

that if the truth vector is not supplied here that it is not possible to compute

the metrics for the elastic net model. In particular, there are five metrics that

will be calculated with a call to summary: sensitivity, specificity, false negative

rate, false positive rate, and accuracy. We can call to this function by doing the

following.

> summary(prediction_values)

Good

sensitivity 0.76315789

specificity 0.90163934

false negative rate 0.23684211

false positive rate 0.09836066

accuracy 0.84848485

This extension of glmnet with a customizable loss function can be used in

5

any number of scenarios. One concept to keep in mind is that this package

produces regularized binomial logistic regression models. These classifiers are

a special case of logistic regression models and as such must meet a set of

assumptions. First, model regularization is often desired when the underlying

problem is ’ill-posed’. The regularization parameter is implemented to perform

feature selection and to generate (in theory) a unique, optimal logistic regression

model. Secondly, these classifiers are designed to classify variables that fall into

exactly two categories. If the response variable of interest consists of more than

two classes, then the user is referred to the glmnet package that contains the

necessary software for building multinomial logistic regression models.

References

[1] LaMarche BL Monroe ME Moore RJ Venzin AM Smith RD Sego LH Payne

SH Tardiff MF Amidan BG, Orton DJ. Signatures for mass spectrometry

data quality. 2014.

6

