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Abstract

The Trades and Quotes data of the New York Stock Exchange is a popular input
for the implementation of intraday trading strategies, the measurement of liquidity and
volatility and investigation of the market microstructure, among others. This package
contains a collection of R functions to carefully clean and match the trades and quotes
data, calculate ex post liquidity and volatility measures and detect price jumps in the
data.
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1. General information

Handling high-frequency data can be particularly challenging because of the specific charac-
teristics of the data, as extensively documented in Yan and Zivot (2003). The RTAQ package
offers high-level tools for the analysis of high-frequency data. These tools tackle three typical
challenges of working with high-frequency data. A first specific challenge is the enormous
number of observations, that can reach heights of millions observations per stock per day.
Secondly, transaction-by-transaction data is by nature irregularly spaced over time. Thirdly,
the recorded data often contains errors for various reasons.

The RTAQ package offers a (basic) interface to manage Trades and Quotes (TAQ) data. Fur-
thermore and foremost, it offers easy-to-use tools to clean and aggregate high-frequency data,
and to calculate volatility and liquidity measures. The tools for data management and clean-
ing in RTAQ are specifically designed for data from the New York Stock Exchange (NYSE) TAQ
database, in constrast to the liquidity and volatility functions which will work with most types
of data input. On the topic of volality measurement RTAQ wants to be complementary to the
realized package (Payseur 2008) by focussing on robust and recently introduced volalitity
measures. The function as.realized0Object serves as a bridge between both packages.

RTAQ strongly builds on the functionality offered by the xts package (Ryan and Ulrich 2009)
and the timeDate (Wuertz and Chalabi 2009) package.

The RTAQ package is part of the TradeAnalytics project on R-forge and the latest version of
the package can be downloaded through the following command:

install.packages("RTAQ", repos="http://R-Forge.R-project.org")

The latest stable and fully documented version can be downloaded from CRAN by:
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Figure 1: Structure of raw data on hard disk.
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install.packages ("RTAQ")

2. TAQ data management essentials

The TAQ database of the NYSE contains the intraday (high-frequency) information for all
listed stocks on both the transactions and the best quotes of the designated market maker
(formerly called specialist). This enables researchers and practitioners to measure volatility
as wel as liquidity more precisely, and to investigate microstructure issues, which explains the
popularity of the TAQ database. The data is typically subdivided into two files, containing
information on the trades and quotes respectively.

2.1. Raw data conversion

Raw TAQ data can be obtained in several ways.! Therefore, we need to set a “standard” way
to store and organise the data, before the functions for the analysis can be presented. We
recommend to save the raw data in txt format and structure it as illustrated by Figure 1.
This means that the folder “TAQdata” contains a number of folders (one for each trading day
in the sample), while each of these folders contains two txt files for each stock, containing the
information on trades and quotes respectively.

In a following step, the function convert can be used to convert the txt files into xts objects
(Ryan and Ulrich 2009) that are saved on-disk in the “RData” format. The function convert
maintains the same folder and name structure as in Figure 1 (except for the fact that the
data is now stored as “.RData” obviously). As a next step, the function TAQLoad can be used
to load the on-disk data into your R workspace.

We opt to store the data as xts objects because this type of object can be indexed by an indica-

'The NYSE itself delivers historical data on monthly DVD’s or for recent data through the “TAQ web”.
TAQ data can also be obtained through external vendors such as the Wharton Research Data Services.
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tor of time and date. We choose an indicator of class “timeDate” (Wuertz and Chalabi 2009). 2

2.2. Trades and quotes data description

Both trades and quotes data are thus saved as xts objects (Ryan and Ulrich 2009), using e.g.
the convert function. Table 1 reports the information (i.e. columns) in trades and quotes
data objects and the package contains two sample datasets in the data format it assumes:

> library(RTAQ) ;
> data("sample_tdataraw");
> head(sample_tdataraw) ;

SYMBOL EX PRICE  SIZE COND CR G127
2008-01-04 09:30:26 "XXX" "N" "193.76" "345050" "0" "0" "O"
2008-01-04 09:30:27 "XXX" "N" "193.82" "100"  "E" "0Q" "O"
2008-01-04 09:30:27 "XXX" "N" "193.82" "400"  "E" "0" "O"
2008-01-04 09:30:27 "XXX" "N" "193.82" "50" ME" mQ" MO
2008-01-04 09:30:27 "XXX" "N" "193.82" "50" "E" Q" Q"
2008-01-04 09:30:27 "XXX" "N" "193.82" "50" E"  "Q" MO

> data("sample_qdataraw");
> head(sample_tdataraw) ;

SYMBOL EX PRICE  SIZE COND CR G127
2008-01-04 09:30:26 "XXX" "N" "193.76" "345050" "0" "0" "O"
2008-01-04 09:30:27 "XXX" "N" "193.82" "100"  "E" "0" "O"
2008-01-04 09:30:27 "XXX" "N" "193.82" "400"  "E" "0" "0O"
2008-01-04 09:30:27 "XXX" "N" "193.82" "50" "E"  "O" "0
2008-01-04 09:30:27 "XXX" "N" "193.82" "50" "E"  "Q" MO
2008-01-04 09:30:27 "XXX" "N" "193.82" "50" ME" mQU MO

2.3. Data cleaning

For various reasons, raw trade and quote data contains numerous data errors. Therefore, the
data is not suited for analysis right-away, and data-cleaning is an essential step in dealing
with tick-by-tick data (Brownlees and Gallo 2006). RTAQ implements the step-by-step cleaning
procedure proposed by Barndorff-Nielsen et al. (2008). Table 2 provides an overview of the
cleaning functions. A user can either use a specific cleaning procedure or a wrapper function
that performs multiple cleaning steps. The wrapper functions offer on-disk functionality:
i.e. load on-disk raw data and save the clean data back to your hard disk. This method
is advisable in case you have multiple days of data to clean. Of course, the data should be
organised as described above to benefit from this functionality.

To maintain some insight in the cleaning process, the functions tradesCleanup and quotesCleanup
report the total number of remaining observations after each cleaning step:

2Examples of the use of xts objects can be found on http://www.quantmod . com/examples/data/ .


http://www.quantmod.com/examples/data/.
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Table 1: Elements of trade and quote data

All data
SYMBOL The stock’s ticker
EX Exchange on which the trade/quote occurred
Trade data
PRICE Transaction price
SIZE Number of shares traded

COND Sales condition code
CORR Correction indicator

G127 Combined ”G”, Rule 127, and stopped stock trade
Quote data

BID Bid price

BIDSIZ Bid size in number of round lots (100 share units)

OFR Offer price

OFRSIZ  Offer size in number of round lots (100 share units)
MODE Quote condition indicator

> data("sample_tdataraw");

> dim(sample_tdataraw);

[1] 48484 7

> tdata_afterfirstcleaning = tradesCleanup(tdataraw=sample_tdataraw,exchanges="N");
> tdata_afterfirstcleaning$report;

initial number no zero prices select exchange
48484 48479 20795
sales condition merge same timestamp
20135 9105
> dim(tdata_afterfirstcleaning$tdata)
[1] 9105 7

3. Liquidity

3.1. Mathing trades and quotes

Trades and quotes are supplied by the NYSE as separate data objects. For many research
questions related to transaction data, one needs to merge trades and quotes. Since trades and
quotes can be subject to different reporting lags, this is not a straightforward operation (Lee
and Ready 1991). The function matchTradesQuotes can be used for matching trades and
quotes. One should supply the number of seconds quotes are registered faster than trades.
Based on the research of Vergote (2005), we set 2 seconds as the default.

3.2. Inferred trade direction

The NYSE TAQ database does not indicate whether individual trades are market buy or
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Table 2: Cleaning functions

Function Function Description
All Data:

ExchangeHoursOnly Restrict data to exchange hours
selectexchange Restrict data to specific exchange

Trade Data:
noZeroPrices Delete entries with zero prices
autoSelectExchangeTrades Restrict data to exchange with highest trade volume
salesCondition Delete entries with abnormal Sale Condition
mergeTradesSameTimestamp Delete entries with same time stamp and use median price
rmTradeOutliers Delete entries with prices above/below ask/bid +/- bid/ask spread

Quote Data:
noZeroQuotes Delete entries with zero quotes

autoSelectExchangeQuotes
mergeQuotesSameTimestamp
rmNegativeSpread
rmLargeSpread

rmOutliers

Restrict data to exchange with highest bidsize + offersize

Delete entries with same time stamp and use median quotes
Delete entries with negative spreads

Delete entries if spread > maxi*median daily spread

Delete entries for which the mid-quote is outlying with respect to
surrounding entries

Wrapper cleanup functions (perform sequentially the following for on-disk data)

tradesCleanup
quotesCleanup

tradesCleanupFinal

noZeroPrices, selectExchange, salesCondition, mergeTradesSameTimestamp.
noZeroQuotes, selectExchange, rmLargeSpread, mergeQuotesSameTimestamp
rmOutliers

rmTradeOutliers (based on cleaned quote data as well)

market sell orders. RTAQ implements with getTradeDirection the Lee-Ready rule (Lee and
Ready 1991) to infer the trade direction based on the matched trades and quotes.

3.3. Liquidity measures

Numerous liquidity measures can be calculated based on matched trade and quote data,
using the function tqliquidity (see Bessembinder (2003), Boehmer (2005), Hasbrouck and
Seppi (2001) and Venkataraman (2001) for more information on the implemented liquidity
measures). The main implemented liquidity measures are listen in Table 3, and can be used
as arguments of the function tqLiquidity.

The example below illustrates how to: (i) match trades and quotes, (ii) get the trade direction
and (iii) calculate liquidity measures.

V V.V VvV Vv VvV

#Load data samples

data("sample_tdata");

data("sample_qdata");

#Match the trade and quote data

tqdata = matchTrades@uotes(sample_tdata,sample_qdata);

#Display information in tqdata

colnames (tqdata);

[1] "SyMBOL" "EX" "PRICE" "SIZE" "COND" "CORR" "G127" "BID"
[9] "BIDSIZ" "OFR" "OFRSIZ" "MODE"
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Table 3: Overview of Liquidity measures

Argument(s) Liquidity measures
es, Is Compute effective (realized) spread
value_trade Compute trade value (price X size)
signed_value_trade Compute signed trade value
signed_trade_size Compute signed trade size
di_diff, di_div Compute depth imbalance
pes, prs Compute proportional effective and realized spread
price_impact, prop_price_impact Compute price impact
tspread, pts Compute half traded and proportional half-traded spread
gs, loggs Compute quoted spread
gsslope, loggslope Compute quoted slope
> #Get the inferred trade direction according to the Lee-Ready rule
> x = getTradeDirection(tqdata);
> #Calculate the proportional realized spread:
> prs = tqliquidity(tqdata,sample_tdata,sample_qgdata,type="prs");
> #Calculate the effective spread:
> es = tqliquidity(tqdata,type="es");

4. Aggregation and volatility

The availability of high-frequency data has enabled researchers to estimate the ex post realized
volatility based on squared intraday returns (Andersen et al. 2003). In practice, the main
challenges in univariate volatility estimation are dealing with (i) jumps in the price level
and (ii) microstructure noise. Multivariate volatility estimation is additionally callenging
because of (i) the asynchronicity of observations between assets and (ii) the need for a positive
semidefnite covariance matrix estimator. While numerous realized (co)volatility estimators
have been implemented in the realized package (Payseur 2008), RTAQ also implements jump-
robust and recently introduced (co)volatility estimators. The function as.realizedObject
can be used to convert the xts objects used in RTAQ, to realized objects.

An overview of the univariate and multivariate volatility estimators implemented in RTAQ
is given in Table 4. The first two columns indicate whether the estimator can be applied
to univariate or multivariate price series. The following two columns indicate whether the
estimator is robust with respect to jumps and microstructure noise respecitively. The next
column reports whether asynchronic price series can/should be used as input. The last column
indicates whether the estimator always yields a positive semidefinite matrix in the multivariate
case. Non positive semidefinite estimates can be transformed into a positive semidefinite
matrix with the function makePsd, which uses the eigenvalue method.

While most multivariate estimators rely on synchronized data (see e.g. Table 4), prices are
typically recorded at different points in time for different assets. There several ways to force
these asynchronally recorded series to a synchronized and/or equispaced time grid. The most
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Table 4: Overview of Volatility estimators

Estimator Univariate | Multivariate | Jump | Microstructure Tick-by-tick Positive
robust noise robust returns as input | semidefinite

MedRV (Andersen et al. 2010) x X /

MinRV (Andersen et al. 2010) X X /

RCov (Andersen et al. 2003) x x x

RBPCov (Barndorff-Nielsen and Shephard 2004) X X X

ROWCov (Boudt et al. 2011a) x x X X

thresholdCov (Gobbi and Mancini 2009) x x X

TSCov (Zhang 2011) x X x X

RTSCov (Boudt and Zhang 2010) x X X x x

popular method, previous tick aggregation, forces prices to an equispaced grid by taking the
last price realized before each grid point. The function aggregatePrice is useful for previous
tick aggregation of a price series, while the aggregateTrades and aggregateQuotes can be
used for aggregating trade and quote data respectively. Another synchronization method
is refresh time, initially proposed by Harris and Wood (1995) and recently advocated in
Barndorff-Nielsen et al. (2011). The function refreshTime can be used to force time series
to a synchronized but not necessarily equispaced time grid. The so-called refresh times are
the time points at which all assets have traded at least once since the last refresh point. For
example, the first refresh time corresponds to the first time at which all stocks have traded.
The subsequent refresh time is defined as the first time when all stocks have been traded
again. This process is repeated untill the end of one time series is reached.

Illustration on price aggregation and volatility calculation:

data("sample_tdata");

data("sample_qdata");

#We assume that stockl and stock2 contain price data on imaginary stocks:
stockl = sample_tdata$PRICE;

stock2 = sample_qdata$BID;

#Previous-tick aggregation to one minute:

mPrice_1min = cbind(aggregatePrice(stockl),aggregatePrice(stock2));
#Refresh time aggregation:

mPrice_Refresh = refreshTime(list(stockl,stock2));

#Calculate a jump robust volatility measures

#based on synchronized data:

rbpcovl = RBPCov(mPrice_lmin,makeReturns=TRUE) ;

rbpcov2 = RBPCov (mPrice_Refresh,makeReturns=TRUE) ;

#Calculate a jump and microstructure noise robust volatility measure
#based on nonsynchronous data:

rtscov = RTSCov(list(stockl,stock2));

VVVVVVVVVVVVVVVYV

A last interesting feature of high-frequency data is the periodicity in the volatility of high-
frequency returns induced by opening, lunch and closing of financial markets (Andersen and
Bollerslev 1997). RTAQ implements both the classic intraday periodicity estimation method of
Andersen and Bollerslev (1997) and a jump robust version proposed by Boudt et al. (2011b).
These estimation methods assume that the intraday volatility (called vol in output) can
be decomposed in a daily volatility factor (constant for all intraday returns observed on the
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Figure 2: Estimated periodicity pattern using spotVol function.
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same day, called dailyvol) and an intraday factor (deterministic function of the intraday time,
called periodicvol). The estimates are either non-parametric (based on a scale estimator) or
parametric (based on regression estimation of a flexible specification for the intraday factor).

The sample code below illustrates the estimation of intraday periodicity as well as Figure 2:
data("sample_realbminprices");

#compute and plot intraday periodicity

out = spotVol(sample_realbminprices,P1=6,P2=4,periodicvol="TML" , k=5,
dummies=FALSE) ;

head (out) ;

vV + V V VvV V

returns vol dailyvol periodicvol
2005-03-04 09:35:00 -0.0010966963 0.004081072 0.001896816 2.151539
2005-03-04 09:40:00 -0.0005614217 0.003695715 0.001896816 1.948379
2005-03-04 09:45:00 -0.0026443880 0.003417950 0.001896816 1.801941
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