rm(list=ls())
library(nnrr)
library(dplyr)
library(tidyr)
RegData <- nnrr::nnrrHentRegData()
oppsum <- RegData %>%
dplyr::filter(Aar == 2023) %>%
dplyr::mutate(
Kjønn = factor(ErMann, levels = 0:1, labels = c("Kvinne", "Mann")),
pstEndringSmerteHvile = (PainExperiencesNoActivity -
PainExperiencesNoActivity_post)/
PainExperiencesNoActivity*100,
pstEndringSmerteAktiv = (PainExperiencesActivity -
PainExperiencesActivity_post)/
PainExperiencesActivity*100) %>%
dplyr::summarise(
Antall = n(),
gjsn_PainExperiencesActivity = mean(PainExperiencesActivity, na.rm = T),
gjsn_PainExperiencesNoActivity = mean(PainExperiencesNoActivity, na.rm = T),
gjsn_OdiScore = mean(OdiScore, na.rm = T),
andel_hcsl10_str1.85 = sum(HSCL10Score > 1.85, na.rm = T)/sum(!is.na(HSCL10Score))*100,
klin_bedring_funksjon_6mnd =
sum(regstatus==1 & regstatus_post==1 &
!is.na(OdiScore) & !is.na(OdiScore_post) & OdiScore != 0 &
((OdiScore - OdiScore_post)/OdiScore >= .3))/
sum(regstatus==1 & regstatus_post==1 & OdiScore != 0 &
!is.na(OdiScore) & !is.na(OdiScore_post))*100,
minimal_funksjonsnedsettelse_6mnd = sum(
regstatus==1 &
regstatus_post==1 &
!is.na(OdiScore) &
!is.na(OdiScore_post) &
(OdiScore_post <= 23))/
sum(regstatus==1 &
regstatus_post==1 &
!is.na(OdiScore) &
!is.na(OdiScore_post))*100,
klin_viktig_EndringSmerteHvile =
sum((regstatus_pre == 1 & regstatus_post == 1 &
!is.na(PainExperiencesNoActivity) &
!is.na(PainExperiencesNoActivity_post) &
(PainExperiencesNoActivity != 0)) & (pstEndringSmerteHvile >= 30))/
sum(regstatus_pre == 1 & regstatus_post == 1 &
!is.na(PainExperiencesNoActivity) &
!is.na(PainExperiencesNoActivity_post) &
(PainExperiencesNoActivity != 0))*100,
klin_viktig_EndringSmerteAktiv =
sum((regstatus_pre == 1 & regstatus_post == 1 &
!is.na(PainExperiencesActivity) &
!is.na(PainExperiencesActivity_post) &
(PainExperiencesActivity != 0)) & (pstEndringSmerteAktiv >= 30))/
sum(regstatus_pre == 1 & regstatus_post == 1 &
!is.na(PainExperiencesActivity) &
!is.na(PainExperiencesActivity_post) &
(PainExperiencesActivity != 0))*100,
andel_tilbake_jobb =
sum(regstatus_pre == 1 & regstatus_post == 1 &
IsEmployed == 1 & S2_SickLeave & S2_Working_post &
(!S2_SickLeave_post & !S2_NAV_post))/
sum(regstatus_pre == 1 & regstatus_post == 1 &
IsEmployed == 1 & S2_SickLeave)*100,
andel_pasrapportert_bedring =
sum(regstatus_pre == 1 & regstatus_post == 1 &
UseOfTreatment %in% 1:3)/
sum(regstatus_pre == 1 & regstatus_post == 1 &
UseOfTreatment %in% 1:7)*100,
andel_fornoyd =
sum(regstatus_pre == 1 & regstatus_post == 1 &
TreatmentSatisfaction != 0 & !is.na(TreatmentSatisfaction) &
TreatmentSatisfaction %in% 1:3)/
sum(regstatus_pre == 1 & regstatus_post == 1 &
TreatmentSatisfaction != 0 & !is.na(TreatmentSatisfaction))*100,
.by = Kjønn
) %>% tr_summarize_output()
write.csv2(oppsum, "~/mydata/nnrr/majatall_sept2024.csv", row.names = F)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.