man-roxygen/deriv_wv/1st/deriv1_ma1.R

#' @section Process Haar WV First Derivative:
#' Taking the derivative with respect to \eqn{\theta}{theta} yields:
#' \deqn{\frac{\partial }{{\partial \theta }}\nu _j^2\left( {\theta ,{\sigma ^2}} \right) = \frac{{{\sigma ^2}\left( {2\left( {\theta  + 1} \right){\tau _j} - 6} \right)}}{{\tau _j^2}}}{d/dtheta v[j]^2 (theta, sigma2) = (sigma2*(2*(theta+1)*tau[j]-6))/(tau[j]^2)}
#' 
#' Taking the derivative with respect to \eqn{\sigma^2}{sigma^2} yields:
#' \deqn{\frac{\partial }{{\partial {\sigma ^2}}}\nu _j^2\left( {\theta ,{\sigma ^2}} \right) = \frac{{{{\left( {\theta  + 1} \right)}^2}{\tau _j} - 6\theta }}{{\tau _j^2}}}{d/dsigma2 v[j]^2 (theta, sigma2) = ((theta+1)^2*tau[j]-6*theta)/(tau[j]^2)}
SMAC-Group/simts documentation built on Sept. 4, 2023, 5:25 a.m.