plot.cval | R Documentation |
Plot a cross-validation object (tuning RGCA parameters in 'supervised' mode). The parameters tuned for maximizing the cross-validation metric is displayed in the title. On the y-axis, the tuning parameter set. On the x-axis, a boxplot of the cross-validation metric.
## S3 method for class 'cval' plot( x, type = "sd", cex = 1, cex_main = 14 * cex, cex_sub = 12 * cex, cex_point = 3 * cex, cex_lab = 12 * cex, display_order = TRUE, ... )
x |
A rgcca_cv object (see rgcca_cv) |
type |
Character string indicating the statistics in the box plots:
|
cex |
A numeric defining the size of the objects in the plot. Default is one. |
cex_main |
A numeric defining the font size of the title. Default is 14 * cex. |
cex_sub |
A numeric defining the font size of the subtitle. Default is 12 * cex. |
cex_point |
A numeric defining the font size of the points. Default is 3 * cex. |
cex_lab |
A numeric defining the font size of the labels. Default is 12 * cex. |
display_order |
A logical value for ordering the variables. If TRUE, variables are ordered from highest to lowest absolute value. If FALSE, the block order is used. Default is TRUE. |
... |
Additional graphical parameters. |
A ggplot2 plot object.
data("Russett") blocks <- list( agriculture = Russett[, seq(3)], industry = Russett[, 4:5], politic = Russett[, 6:8] ) res <- rgcca_cv(blocks, response = 3, method = "rgcca", par_type = "tau", par_value = c(0, 0.2, 0.3), n_run = 1, n_cores = 1 ) plot(res)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.