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Introduction

We think of a community as a collection of species occurring at a single site, while a meta-community is a
collection of communities at multiple sites. In this vignette we adopt the simulation of a meta-community
described in chapter 11.2 of Kéry and Royle (2016). Note that we here focus on meta-communities for
presence/absence patterns of species, while it is rather straightforward to adopt the concepts to abundance
data (see Chapter 11 in Kéry and Royle 2016 for more details).

As a requirement to run the presented code, the latest version of the detectionfilter package should be
downloaded using the following code.
library(devtools)
install_github("TobiasRoth/detectionfilter")
library(detectionfilter)

The detectionfilter package provides the function simcom() to simulate community data subject to environ-
mental and detection filtering.

Hierarchical view of a meta-community

A meta-community can be described with a site x species matrix. We call this matrix the community matrix
z. This community matrix is one of the fundamental biological quantities on which we are usually focusing
in community ecology research. We denote sites with i and species with k. Thus, z[i,k]=0 indicates that
species k is not present at site i, while z[i,k]=1 indicates that the species is present.

One of the key assumption of the Kéry and Royle view of a meta-community is that differences between
species can be described with a normal distribution with the species mean and the among-species standard
deviation as its parameters. Thus, differences among species in occupancies (i.e. psi[k], the probability a
site is occupied by species k) can be described with only two parameters. Note that the normal distribution
is assumed on the logit-scale (i.e. log(psi[k]/(1-psi[k]))) and not on the occupancy scale.
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While this allows for a very parsimonious description of a community, it seems flexible enough to describe
real communities. For example, let us have a look at the plants data of the Swiss biodiversity monitoring
(?plantsBDM for more information). We first obtain the observed community matrix for Swiss plants by
assuming a plant species was present at a site if it was observed during at least one of the two surveys. Then,
we obtain the occupancies for all species and calculate the mean and standard deviation at the logit-scale.
# Calculate observed community matrix
z_obs <- apply(plantsBDM$y, c(1,2), max)

# Calculate observed occupancies for all species
psi <- apply(z_obs, 2, mean)

# Mean and sd at logit-scale
(mean.lpsi <- mean(qlogis(psi)))

## [1] -2.898826

(sig.lpsi <- sd(qlogis(psi)))

## [1] 2.076668

We can now compare the distribution of the observed plant species’ occupancies with the distribution
of simulated occupancies using only the mean and standard deviation of the species’ occupancies. The
distribution of observed and simulated occupancies look rather similar with slightly less very rare species in
the simulated occupancies.
par(mfrow = c(1,2))
hist(psi, breaks = 100, ylim = c(0,500), main = "",

ylab = "Number of species", xlab = "Occupancy (observed)")
hist(plogis(rnorm(1733, mean.lpsi, sig.lpsi)),

breaks = 100, ylim = c(0,500), main = "",
ylab = "Number of species", xlab = "Occupancy (simulated)")
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Fig. 1: Left panel. Distribution of the occupancies for the 1733 plant species contained in the two surveys of
plant communities from the Swiss Biodiversity Monitoring. Right panel. Distribution of simulated occupancies
of the same number of species using only the mean and SD of the observed occupancies as parameter in the
simulation.
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Thus far, occupancies of species are constant across sites. However, a more likely scenario would be that the
sites are distributed across an environmental gradient and for each species the occupancies would vary along
this gradient. A sensible way to describe this might be to use a logistic regression for each species with the
occupancy as the dependent variable and the gradient as predictor variable. For simplicity we here use only
the linear term (slope) of the gradient, but one could also use linear and quadratic terms to allow for peak
occupancy at intermediate stages of the gradient.

Again a very parsimonious description would be to assume that the differences between species in the slope
of the gradient are normally distributed. Thus with only four parameters (mean intercept of species, SD of
differences in intercept between species, mean slope of gradient effect of species, SD of differences in slope
between species) we can describe how the occupancies of species are distributed across an (environmental)
gradient.
# Choose how many species should be simulated
nspec <- 50

# Choose the values for the four parameters to describe species' occupancies along gradient
mean.lpsi <- 1.0 # Mean intercept of species' occupancies
sigma.lpsi <- 1.0 # SD of species differences in intercept
mu.beta.lpsi <- -0.3 # Mean slope of species' occupancies along gradient
sig.beta.lpsi <- 0.5 # SD of species differences in slopes

# Simulate intercept (b0) and slope (b1) for each species
b0 <- rnorm(nspec, mean.lpsi, sigma.lpsi)
b1 <- rnorm(nspec, mu.beta.lpsi, sig.beta.lpsi)

# Plot species occupancies along gradient
plot(NA, xlim = c(-3, 3), ylim = c(0, 1),

xlab = "gradient (e.g. elevation)", ylab = "Occupancy")
gradient <- seq(-3, 3, 0.1)
for(k in 1:nspec) {

lpsi <- b0[k] + b1[k] * gradient
points(gradient, plogis(lpsi), lwd = 0.5, ty = "l", col = "grey")

}

−3 −2 −1 0 1 2 3

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

gradient (e.g. elevation)

O
cc

up
an

cy

Fig. 2: Occupancy response of 50 simulated species to the gradient.
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These curves could be interpreted as a description of the realized niche of each species along the gradient.
They describe for each species how likely they are to occur at a given location along the elevational gradient.
To obtain a realized community we may take for each species the probability that it occurs at that site and
sample from a Bernoulli distribution whether the species is indeed present or not. If we repeat that for each
species we get the entire community, and if we repeat that for several sites we get a meta-community.
# Number of sites in the meta-community
nsite <- 100

# Distribution of sites along the gradient
# Note that the choice of the distribution is not of particular importance, and
# we may also use a uniform distiruntion
gradient <- rnorm(nsite, 0, 1.5)

# Simulation of the realized meta-community
z <- matrix(NA, nsite, nspec)
for(k in 1:nspec) {

lpsi <- b0[k] + b1[k] * gradient
z[,k] <- rbinom(nspec, 1, plogis(lpsi))

}

Environmental filtering

It is now time to add some ideas from functional ecology. For example, the response of species occurrence along
a gradient (Fig. 2) may not vary randomly among species but vary according to some specific (functional)
traits of the species. If we think of the gradient as some sort of an environmental gradient (e.g. temperature
gradient, humidity gradient, . . . ) and the distribution of species along this gradient can be explained by
differences in traits of the species, we would speak of environmental filtering.

Given environmental filtering, a prediction would be that the expression of the functional traits of species in
the community would change along the gradient. For example, we could measure the average expression of a
functional trait of occurring species (i.e. the community mean, CM) and infer whether it is changing along
the gradient.
# Distribution of functional trait expression across species
# (we assume that we standardized the trait values, and the range
# of trait values covers about 6 standard deviations)
trait <- rnorm(nspec, 0, 1.5)

# Calculate community mean
CM <- apply(z, 1, function(x) mean(trait[x==1]))

# Plot CMs along gradient
plot(gradient, CM, pch = 16, cex = 0.7, ylim = c(-1.5, 1.5))
abline(lm(CM ~ gradient))
abline(h = mean(trait), lty = 2)
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Fig. 3: Mean trait value of occurring species (i.s. CM) at communities along the gradient. The solid line
gives the regression line. For reference, the dashed line gives the average trait expression for all species.

Thus far, we assumed that differences in the slope of the species’ responses to the gradient changed according
to a normal distribution but did not vary according to the functional trait of the species. Thus we did not
expect CMs to vary along the elevational gradient. In fact, since species presence in the communities is
independent of the trait values, we expected CM to randomly vary along the entire gradient around the
average trait expression of all species. Figure 3 suggests that the result of the simulation complies with this
expectation.

Now, we aim to add to the simulation an effect of the functional trait on the species’ response (slope) to the
gradient. For example, we could assume that we infer a plant meta-community and the functional trait is a
measure of plant height, while the gradient reflects elevation. Since occupancies of larger plants are likely to
decrease with elevation, we set a negative value for the effect of the functional trait on the species’ response
to the gradient.
# Effect of functional trait on species response to gradient
mu.FTfilter.lpsi <- -1

# Species response (slope) also depends on functional trait
b1 <- rnorm(nspec, mu.beta.lpsi + mu.FTfilter.lpsi * trait, sig.beta.lpsi)

# Simulation of the realized meta-community (same code as above)
z <- matrix(NA, nsite, nspec)
for(k in 1:nspec) {

lpsi <- b0[k] + b1[k] * gradient
z[,k] <- rbinom(nspec, 1, plogis(lpsi))

}

# Calculate community mean
CM <- apply(z, 1, function(x) mean(trait[x==1]))

# Plot CMs along gradient
plot(gradient, CM, pch = 16, cex = 0.7, ylim = c(-1.5, 1.5),
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xlab = "Gradient (e.g. elevation)", ylab = "CM (e.g. average plant height)")
abline(lm(CM~gradient))
abline(h = mean(trait), lty = 2)
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Fig. 4: Mean trait value of occurring species (i.s. CM) at communities along the gradient. The solid line
gives the regression line. For reference, the dashed line gives the average trait expression for all species.

Now the CM decreases along the gradient and the regression line clearly deviates from the zero-line. In our
example this pattern is explained by the filtering of larger species at higher elevations (and the opposite at
low elevations.)

Detection filtering

Up to now, we have simulated a meta-community z subject to environmental filtering. However, if we do field
surveys to infer the presence of species in multiple communities, we are unlikely to get exactly the community
matrix z. This is because measurement errors seem likely, especially because some of the species are not
seen even though they were present (i.e. false-negatives). Let’s define the observations as y[i,k]=0 if we
did not observe species k at site i and y[i,k]=1 if we observed the species. Thus, whenever a species is
not present in a community, that is z[i,k]=0, we can not observe the species (y[i,k]=0). However, if a
species is present in a community, that is z[i,k]=1, we may or may not observe the species with a certain
probability. We may call this probability the detection probability p. Thus, whether we observe a species
present in a community we can simulate from a Bernoulli distribution with p as its parameter.

Similar as for occupancy, the detection probability may vary between species and between some characteristics
of the survey. For example, the date when a biologist surveyed a community may vary among communities.
This may well affect the probability to detect species, for instance because a plant grows higher during the
season and might thus be easier to be detected later on. We call this effect of the date on the detection
probability of a species the phenological effect.

Again we can choose a parsimonious description to describe different detectabilities between species by
describing the differences between species with normal distribution.
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# Choose the values for the four parameters to describe species' detection probability
mean.lp <- 0.8 # Mean intercept of species' detection probability
sigma.lp <- 1.0 # SD of species differences in intercept
mu.beta.lp <- 1 # Mean species' phenological effect on detection probability
sig.beta.lp <- 1 # SD of species differences in phenological effect

# Simulate intercept (b0) and slope (b1) for each species
a0 <- rnorm(nspec, mean.lp, sigma.lp)
a1 <- rnorm(nspec, mu.beta.lp, sig.beta.lp)

# Distribution of data of surveys
date <- round(rnorm(nspec, 0, 10), 0)

# Simulation of observed community
y <- matrix(NA, nsite, nspec)
for(k in 1:nspec) {

lp <- a0[k] + a1[k] * date
y[,k] <- rbinom(nspec, 1, z[,k]*plogis(lpsi))

}

It is now widely accepted that ignoring the effect of imperfect detection may cause bias if species richness
is compared between communities. However, the effect of detection probability on functional diversity has
largely been neglected. Let us thus compare species richness and community mean of the functional trait
calculated from the community matrix z (i.e. the true community matrix) and calculated from observations y.
# Calculate species richness
SR_true <- apply(z, 1, sum)
SR_obs <- apply(y, 1, sum)

# Calculate community mean of trait expression
CM_true <- apply(z, 1, function(x) mean(trait[x==1]))
CM_obs <- apply(y, 1, function(x) mean(trait[x==1]))

# Make plots
par(mfrow = c(1,2))
plot(gradient, SR_obs, pch = 16, cex = 0.7, ylab = "Species richness", ylim = c(0,50))
abline(lm(SR_obs ~ gradient))
points(gradient, SR_true, cex = 0.7, col = "orange")
abline(lm(SR_true ~ gradient), col = "orange")
plot(gradient, CM_obs, pch = 16, cex = 0.7, ylab = "CM", ylim = c(-2,2))
abline(lm(CM_obs ~ gradient))
points(gradient, CM_true, cex = 0.7, col = "orange")
abline(lm(CM_true ~ gradient), col = "orange")
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Fig. 5: Left panel. Mean species richness of true communities (open orange dots) and observed species
richness (black dots) along the elevational gradient. Right panel. Mean trait expression (CM) of true
communities (open orange dots) and CMs of observed communities (black dots) along the elevational gradient.

Clearly, observed species richness is biased low as compared to the true species richness in communities.
Furthermore, the trend of species richness along the gradient seems to differ between observed and true
species richness. This would be especially problematic as inferring patterns of community change along a
gradient is a nice way to infer the driving patterns that drive the assembly of communities. In contrast, the
community means of the functional trait is not affected by imperfect detection. This is not surprising, as
detection probability of a species in this example was unrelated to the expression of the functional trait in
that species.

However, it seems likely that at least some of the functional traits that are often used in functional ecology
research predict how likely it is to detect a species. For instance, plant height is an important functional trait,
and to detect larger plant species seems more likely than to detect smaller plant species. Thus, although
present in the (true) community, some of the species are filtered from the observed communities, and this
filtering is related to the functional trait. We therefore speak of detection filtering. To implement detection
filtering in the simulation we added another parameter that describes how strongly the average detection
probability changed with the expression of the functional trait.
# Effect of functional trait on the average detection probability of a species
mu.FTfilter.lp <- 2

# Average detection probability (intercept) also depends on functional trait
a0 <- rnorm(nspec, mean.lp + mu.FTfilter.lp * trait, sigma.lp)

# Simulation of observed community (same code as above)
y <- matrix(NA, nsite, nspec)
for(k in 1:nspec) {

lp <- a0[k] + a1[k] * date
y[,k] <- rbinom(nspec, 1, z[,k]*plogis(lp))

}

# Calculate community mean of trait expression
CM_obs <- apply(y, 1, function(x) mean(trait[x==1]))

# Make plots
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par(mfrow = c(1,2))
plot(trait, plogis(a0), pch = 16, cex = 0.7, ylim = c(0,1),

ylab = "Avg. detection probability", xlab = "Trait (e.g. plant height)")
plot(gradient, CM_obs, pch = 16, cex = 0.7, ylab = "CM", ylim = c(-2,2))
abline(lm(CM_obs ~ gradient))
points(gradient, CM_true, cex = 0.7, col = "orange")
abline(lm(CM_true ~ gradient), col = "orange")

−3 −1 0 1 2 3

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Trait (e.g. plant height)

A
vg

.  
de

te
ct

io
n 

pr
ob

ab
ili

ty

−4 −2 0 2 4
−

2
−

1
0

1
2

gradient

C
M

Fig. 6: Left panel. The average detection probability of a species is increasing with the expression of the
trait value in that species. Right panel. Mean trait expression (CM) of true communities (open orange dots)
and CMs of observed communities (black dots) along the elevational gradient.

The observed communities tended to have lower community mean values of the trait expression as compared
to the (true) communities. This is because species with low trait value are more likely to be filtered from
the observed communities, as their detection probability is lower than for species with larger trait value.
Note that in the simulation, there is no direct effect of the gradient on detection probabilities. Nonetheless,
the effect of detection filtering tended to decrease with the gradient. This is because at the lower end of
the gradient, the communities consist of fewer species with small trait values and thus with low detection
probabilities. If these species are filtered from the observed communities, the CMs of these communities will
strongly increase. Detection filtering has thus a stronger effect compared to communities at the upper side of
the gradient, where the community consists mainly of species with low trait values with less strong effect on
CMs if some of these species are filtered from the observed communities. As a result, the effect of detection
filtering on measures of functional traits may vary with gradient.
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