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Introduction

Currently, most studies in functional ecology calculate measures of functional diversity directly from obser-
vations, which are usually the counts or observed presences of several species at a number of sites (a site
x species matrix which we call the observed meta-community). However, if measurement errors occur and
especially if the measurement errors depend on species’ traits, functional diversity measures are likely to be
affected (Cardoso et al. 2014; Mihaljevic, Joseph & Johnson 2015; van der Plas et al. 2017).

Kéry & Royle (2016) advocated hierarchical models as an unifying concept in ecology to infer biological
processes independent of measurement errors. They also introduce the package unmarked that makes it easy
to apply these methods in real-world applications. In this vignette we provide a working example how these
methods could be applied in studies of functional diversity.

As a requirement to run the presented code, the latest version of the detecionfilter package should be
downloaded using the following code.
library(devtools)
install_github("TobiasRoth/detectionfilter")
library(detectionfilter)

The detectionfilter package provides the function simcom() to simulate meta-community data where the
change of a species’ occurrence along a gradient depends on trait expression (i.e. environmental filtering),
and where a species’ detection during field surveys also depends on trait expression (i.e detection filtering).
The function simcom() is adopted from the simulation of a meta-community as described in chapter 11.2 in
Kéry and Royle (2016). It is convenient to use simulated data in a working example as it allows to compare
the estimates with the truth (i.e. the values used for the parameters to run the simulations). See chapter 11.2
in Kéry and Royle (2016) and the vignette Simulation of meta-community data subject to environmental and
detection filtering of the package detectionfilter that describes the simulation parameters and the concept
of the simulation in more detail.

We start with simulating data for a study with 200 sites. Each site was visited twice, and the regional species
pool contains 100 species.
set.seed(1234)
dat <- simcom(mu.FTfilter.lpsi = -0.5, mean.psi = 0.8,
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mu.FTfilter.lp = 1, mean.p = 0.8,
nsite = 200, nspec = 100, nrep = 2)

In this simulation we assumed that an average species occurred in 80% of the sites (mean.psi = 0.8), and
during a survey an average species was observed in 80% of the sites in which it actually occurred (mean.p =
0.8). These are rather high values for an average species’ occurrence and detection. Consequently, all species
of the regional species pool were observed, and except for one species that was observed only at four sites, all
species were observed at more than 20 sites.
# Calculate observed meta-community (i.e. merge the observations from the two visits)
commat_obs <- apply(dat$y, c(1,2), max)

# Show species with few observations
sort(apply(commat_obs, 2, sum))[1:10]

## sp88 sp82 sp80 sp65 sp3 sp35 sp46 sp36 sp15 sp16
## 4 24 29 44 48 64 68 71 75 78

Thus, in this example we do not face the problem of rarely observed species for which true occurrence might
be difficult to estimate. Excluding many rarely observed species (either because they are indeed rare or
because they are hard to detect) could bias the results on functional diversity because these species might be
special in terms of their functional traits. In the last chapter of this vignette we therefore tested our approach
under a simulation with many species that were observed at only few sites.

Estimating detection-corrected meta-communites

Estimators of functional diversity may be constructed from model-based estimators of occurrence of individual
species that incorporate imperfect detection of species (Dorazio and Royle 2005). In the hierarchical models
as defined by Kéry and Royle (2016) the model-based estimator of a species’ occurrence (or abundance)
is denoted as the vector ‘z’ with length equal to the number of surveyed sites. Thus, z describes the true
occurrence of a species and can be related to site variables using logistic regression. However, whether a
species is observed at site i during visit j (y[i,j]) depends on variables affecting detection as well as on
its occurrence (that is z[i]). Indeed, the hierarchical structure that the observations conditionally depend
on the outcome of the biological process (f(y|z)) is the overarching principle in many different ecological
models such as capture-recapture models, distance sampling models, occupancy models or N-mixture models
for abundance (Kéry and Royle 2016).

In short, we need to pick one of the many hierarchical models that best fits the structure of our data.
Applying this model to all species separately reveals the true occurrence (or abundance) for all species and
sites. Taking the true occurrences of all species (the ‘z’ for all species) results in the site x species matrix
that we call the detection-corrected meta-community matrix. From this detection-corrected meta-community
matrix we can then calculate functional diversity. We here use the term functional diversity to refer to one
of the many indices of functional diversity that use presence/absence or abundance of species at different
sites (site x species matrix) and functional traits of the species to calculate some indices that describe
the communities in terms of their functional space. Such measures could range from the simple average
of the trait expression of species in the community to multi-dimensional measures of functional diversity
(Mason et al. 2005). Independent of the index used to calculate functional diversity, if calculated from the
detection-corrected meta-community matrix, the measure should be independent from detection filtering
(Dorazio and Royle 2005). Therefore, a comparison between the functional diversity calculated from the
observations and functional diversity calculated from the detection-corrected meta-community matrix would
reveal how detection filtering affects functional diversity.

Since most of the methods to account for measurement errors in hierarchical models described in Kéry and
Royle (2016) are implemented in the R-package unmarked, calculating the detection-corrected community
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matrix z only needs few lines of R-code. The function unmarkedFrameOccu() organizes detection and
non-detection data along with the covariates. The function occu() fits the single season occupancy model of
MacKenzie et al. (2002). A single season occupancy model is a hierarchical model in the form of f(y|z)
where y is the observed species presence and z is the true species presence. The function ranef() estimates
posterior distributions of the z using empirical Bayes methods. Finally, we use the function bup() to extract
the mode of the posterior probability. All these functions are from the package unmarked.
# Package to fit hierarchical models of occurrence and abundance data
library(unmarked)

# Prepare detection-corrected meta-community matrix
z <- array(NA, dim = c(dim(dat$y)[1], dim(dat$y)[2]))

# Apply hierarchical model to all species seperate
for(k in 1:dim(dat$y)[2]) {

d <- unmarked::unmarkedFrameOccu(y = dat$y[,k,], obsCovs = list(date = dat$date),
siteCovs = data.frame(gradient = dat$gradient))

res <- unmarked::occu(~ date ~ gradient, data = d, se = TRUE)
z[,k] <- unmarked::bup(unmarked::ranef(res), stat = "mode")

}

Note that the functions ranef() and bup() can be applied to all hierarchical models implemented in the
package unmarked. Thus, if abundance data instead of presence/absence should be analysed, one only needs
to choose the respective function to organize the data and one of the functions that implement the hierarchical
model for abundance data.

Let us continue with the presence/absence data example. We may be interested in how the mean trait
expression of the species in a community (i.e. community mean CM) changes along the gradient. We calculate
CMs from the observed meta-community, from the detection-corrected meta-community, and from the true
meta-community. Note that the latter we only know because we simulated the data.
# Function to calculate mean trait expression of species in a community (CM)
CM <- function(x) mean(dat$traitmat[x])

# Calculate CMs from observed meta-community matrix, from detection-corrected
# meta-community matrix and from true mata-community matrix
CM_obs <- apply(commat_obs==1, 1, CM)
CM_cor <- apply(z>0.5, 1, CM)
CM_true <- apply(dat$z_true==1, 1, CM)

# Plot CM along gradient
plot(dat$gradient, CM_obs, ylim = c(-1, 1), xlim = c(-5, 5), axes=F, xlab = "", ylab = "", pch = 16, cex = 0.7)
points(dat$gradient, CM_true, cex = 0.7, col = "orange")
points(dat$gradient, CM_cor, pch = "+", cex = 0.7, col = "red")
a <- coef(lm(CM_obs ~ dat$gradient))
curve(a[1] + a[2]*x, -5, 5, add = TRUE)
a <- coef(lm(CM_true ~ dat$gradient))
curve(a[1] + a[2]*x, -5, 5, add = TRUE, col = "orange")
a <- coef(lm(CM_cor ~ dat$gradient))
curve(a[1] + a[2]*x, -5, 5, add = TRUE, col = "red")
polygon(c(-10,10,10,-10), c(-10, -10, -1, -1), col = "white", border = "white")
axis(side=1, seq(-5, 5, 2.5), pos = -1, cex = 0.7)
axis(side = 2, las = 1, pos = -5, cex = 0.7)
mtext(text = "Gradient", side = 1, line = 2, cex = 1)
mtext(text = "Community mean (CM)", side = 2, line = 3, cex = 1)
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Fig. 1: Mean trait expression (CM) of true communities (open orange dots, only known because data are
simulated), CMs of observed communities (black dots) and CMs from detection-corrected communities (red
+) along the elevational gradient.

In this example, community means calculated from observed meta-communities are biased high because
species with low trait values are more likely to remain undetected than species with larger trait values.
Clearly, calculating CMs from the detection-corrected meta-community reveals results that are less biased
than CMs calculated from the observed meta-community. Still, however, how steep CMs are decreasing along
the gradient is similar for observed and detection-corrected meta-communities, and both are similar to the
decrease of CMs along the gradient of the true meta-community. In this example, detection filtering is thus
unlikely to distort the main conclusion that species with higher trait expressions are more likely to be filtered
from the communities at the higher end of the gradient (and species with low trait value at the lower end of
the gradient).

Effect of unobserved or rarely observed species

We now simulate data where some of the species from the species pool remain undetected and a larger
proportion of the species are only observed at few sites.
set.seed(1234)
dat <- simcom(mu.FTfilter.lpsi = -0.5, mean.psi = 0.5,

mu.FTfilter.lp = 2, mean.p = 0.5,
nsite = 200, nspec = 100, nrep = 2)

# Observed community matrix
commat_obs <- apply(dat$y, c(1,2), max)

# Number of observed species
ncol(commat_obs)

## [1] 98
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From the 100 species that are in the regional species pool, two species were not observed at all. Evidently it
is not possible to apply the single-species hierarchical models that we use in our approach to species that were
never observed. Note, however, that hierarchical models exists that are applied to the entire meta-community
and not to each species separately. Some of these multi-species hierarchical models can account for species
of the regional species pool that were not observed. Such multi-species models, however, are difficult to be
implemented in a frequentist framework and are thus not (yet) included in the package unmarked.

Unobserved species may arise because they were rare and did (by chance) not occur on the studied sites. In
this case, they are also not part of the true communities and will thus not affect the estimates of functional
diversity. However, unobserved species may also arise because they were overseen at all the sites they occurred.
In that case these species are likely to bias estimates of functional diversity, and we will not be able to account
for this bias using our approach.
sum(apply(dat$z_true, 2, sum)>0)

## [1] 100

Since we use simulated data, we know the true meta-community. Indeed, all 100 species were present in at
least one of the sites. Thus the two unobserved species were missed in all the sites they occurred.

Additionally to the problem that two species were not observed at all, we also face the problem that some
species were observed only at few sites.
# Proportion of species observed at least once but in less than 10% of sites
mean(apply(commat_obs, 2, sum) < 20)

## [1] 0.2653061

Indeed, more than a quarter of the species were observed in less than 10% of the sites. For species with few
observations it might be difficult to accurately estimate the true occurrence, and it is thus not clear whether
our approach is able to accurately account for detection filtering when a larger proportion of the species are
rare.

As above, we estimate the detection-corrected meta-community using the functions from the package unmarked,
calculate CMs from detection-corrected meta-communities and compare them with the CMs from observations
and the true meta-community known from the simulation.
# Estimate detection-corrected meta-community matrix
z <- array(NA, dim = c(dim(dat$y)[1], dim(dat$y)[2]))
for(k in 1:dim(dat$y)[2]) {

d <- unmarked::unmarkedFrameOccu(y = dat$y[,k,], obsCovs = list(date = dat$date),
siteCovs = data.frame(gradient = dat$gradient))

res <- unmarked::occu(~ date ~ gradient, data = d, se = TRUE)
z[,k] <- unmarked::bup(unmarked::ranef(res), stat = "mode")

}

# Calculate CMs
CM_obs <- apply(commat_obs==1, 1, CM)
CM_cor <- apply(z>0.5, 1, CM)
CM_true <- apply(dat$z_true==1, 1, CM)

# Plot CMs along gradient
plot(dat$gradient, CM_obs, ylim = c(-1.5, 1.5), xlim = c(-5, 5), axes=F, xlab = "", ylab = "", pch = 16, cex = 0.7)
points(dat$gradient, CM_true, cex = 0.7, col = "orange")
points(dat$gradient, CM_cor, pch = "+", cex = 0.7, col = "red")
a <- coef(lm(CM_obs ~ dat$gradient))
curve(a[1] + a[2]*x, -5, 5, add = TRUE)
a <- coef(lm(CM_true ~ dat$gradient))
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curve(a[1] + a[2]*x, -5, 5, add = TRUE, col = "orange")
a <- coef(lm(CM_cor ~ dat$gradient))
curve(a[1] + a[2]*x, -5, 5, add = TRUE, col = "red")
polygon(c(-10,10,10,-10), c(-10, -10, -1.5, -1.5), col = "white", border = "white")
axis(side=1, seq(-5, 5, 2.5), pos = -1.5, cex = 0.7)
axis(side = 2, las = 1, pos = -5, cex = 0.7)
mtext(text = "Gradient", side = 1, line = 2, cex = 1)
mtext(text = "Community mean (CM)", side = 2, line = 3, cex = 1)
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Fig. 2: Results of applying the method to meta-community data where 27% of the 100 species were observed
in less than 10% of the 200 sites. Community means (CMs) of true communities (open orange dots, only known
because data were simulated), CMs of observed communities (black dots) and CMs from detection-corrected
communities (red +) along elevational gradient. The lines represent the regression lines from linear models,
with CMs as dependent variable and the gradient as predictor.

In this example, the change in CMs along the gradient is steeper in the true communities than in the observed
communities. Our approach that accounts for detection filtering is doing quite well in recovering the true
pattern of CMs along the gradient. Still, however, the slope of CMs along the gradient estimated from the
detection-corrected meta-communities is slightly less steep than the slope of true CMs. This is likely because
two species were never observed and our approach is not able to account for the true occurrences of these
species.
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