Description Usage Arguments Value Examples
This function calculates the parameters a and b from GB prior when l ≤ p ≤ u. The previous knowledge can consists in the mean and variance of p or the coefficient ε of impartiality.
1 | beta.params(p, l, u, know_p)
|
p |
Vector of acceptance and rejection quality levels, p_alpha and p_beta |
l |
Upper limit of p |
know_p |
List containing the mean and variance of p or the coefficient ε of impartiality. In the case of impartiality, then Pr(p ≤ p_alpha)=Pr(p ≥ p_beta). |
A data.frame with the following variables of the parameters of GB prior
"p_alpha": Acceptable quality level (AQL)
"p_beta": Rejectable quality level (RQL)
"a": Parameter a
"b": Parameter b
"l": Lower limit of p
"u": Upper limit of p
"mean_p": Mean of p
"var_p": Variance of p
"cdf_left": Pr(p ≤ p_alpha)
"cdf_right": Pr(p ≥ p_beta)
1 2 3 4 5 6 7 8 9 10 11 | p<-c(0.00654, 0.0426)
l<- p[1]/5
u<- p[2]+(p[1]-l)
# knowledge of mean and variance of p distribution
know_p<-list(mean_p=p[1],var_p=((p[2]-p[1])/4)^2)
beta.params(p,l,u, know_p)
# knowledge of epsilon-impartiality of p distribution
know_p<-list(epsilon=0.2)
beta.params(p,l,u, know_p)
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.