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This example illustrates how to set up and incorporate hysteresis into a load
model. Hysteresis occurs when concentrations (and thereby loads) are different
on rising and falling limbs of an event hydrograph for the same magnitude of
streamflow.

This example extends the analysis of Garrett (2012) of nitrate plus nitrite
loads in the Boyer River at Logan, Iowa, USGS gaging station 06609500. The
original time frame for the analysis was for water years 2004 through 2008.
This example extends the analysis through water year 2012. Loads will not be
estimated from this model—it demonstrates only the building and evaluation
phases.

> # Load the necessary packages and the data

> library(rloadest)

> library(dataRetrieval)

> # Get the QW data

> Boyer <- "06609500"

> BoyerQW <- importNWISqw(Boyer, "00631",

+ begin.date="2003-10-01", end.date="2012-09-30")

> # Now the Daily values data

> BoyerQ <- readNWISdv(Boyer, "00060", startDate="2003-10-01",

+ endDate="2012-09-30")

> BoyerQ <- renameNWISColumns(BoyerQ)
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1 Compute the Hysteresis Variables and
Merge the Data

There is no direct diagnostic test to determine if hysteresis is important. The
best way to assess any hysteresis is to compute the hysteresis metric and plot
residuals against that metric. The first section of code will replicate that
effort, beginning with the ”best” predefined model rather than simply
replicating the model used by Garrett (2012). Garrett used a 1-day lag. This
example will use that and add a 3-day lag metric. The function that computes
the metric is hysteresis in smwrBase.

> # Compute the hysteresis metrics.

> BoyerQ <- transform(BoyerQ,

+ dQ1 = hysteresis(log(Flow), 1),

+ dQ3 = hysteresis(log(Flow), 3))

> # Rename the date column in QW so that the data can be merged

> names(BoyerQW)[2] <- "Date"

> # Merge the data

> BoyerData <- mergeQ(BoyerQW, FLOW=c("Flow", "dQ1", "dQ3"),

+ DATES="Date", Qdata=BoyerQ, Plot=F)

> # Create the initial model

> Boyer.lr <- selBestModel("NO2PlusNO3.N", BoyerData,

+ flow="Flow", dates="Date", station=Boyer)

> print(Boyer.lr)

*** Load Estimation ***

Station: 06609500

Constituent: NO2PlusNO3.N

Number of Observations: 101

Number of Uncensored Observations: 101

Center of Decimal Time: 2008.411

Center of ln(Q): 6.4937

Period of record: 2004-03-12 to 2012-09-10

Model Evaluation Criteria Based on AMLE Results

-----------------------------------------------

model AIC SPCC AICc

1 1 103.57 111.42 103.82

2 2 64.40 74.86 64.82

3 3 103.76 114.22 104.17

4 4 103.93 117.00 104.56

5 5 60.70 73.77 61.33
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6 6 64.93 80.62 65.83

7 7 104.34 120.03 105.23

8 8 61.57 79.88 62.78

9 9 57.24 78.16 58.81

Model # 9 selected

Selected Load Model:

--------------------

NO2PlusNO3.N ~ model(9)

Model coefficients:

Estimate Std. Error z-score p-value

(Intercept) 9.522594 0.050343 189.15421 0.0000

lnQ 0.916603 0.031300 29.28439 0.0000

lnQ2 -0.092397 0.013286 -6.95429 0.0000

DECTIME -0.026111 0.012144 -2.15018 0.0277

DECTIME2 -0.015283 0.006199 -2.46541 0.0119

sin.DECTIME 0.104600 0.048919 2.13824 0.0285

cos.DECTIME 0.002443 0.046596 0.05243 0.9567

AMLE Regression Statistics

Residual variance: 0.09464

R-squared: 94.34 percent

G-squared: 290.1 on 6 degrees of freedom

P-value: <0.0001

Prob. Plot Corr. Coeff. (PPCC):

r = 0.9646

p-value = 1e-04

Serial Correlation of Residuals: 0.1058

Variance Inflation Factors:

VIF

lnQ 1.605

lnQ2 1.046

DECTIME 1.030

DECTIME2 1.307

sin.DECTIME 1.231

cos.DECTIME 1.167

Comparison of Observed and Estimated Loads

------------------------------------------

Summary Stats: Loads in kg/d

---------------------------------------------

Min 25% 50% 75% 90% 95% Max

Est 221 3040 8470 16100 35100 51200 121000
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Obs 166 3010 8230 16600 29400 42800 178000

Bias Diagnostics

----------------

Bp: -2.817 percent

PLR: 0.9718

E: 0.7912

The model selected was number 9, which includes second-order flow and time
terms and the first-order seasonal terms. Reviewing the table of model
evaluation criteria, model number 2 had a very small value for AIC and the
second smallest for SPPC. Model number 2 would have been the equivalent
starting model in Garrett (2012), including only the second-order flow terms.
The printed results indicate good bias statistics, but the PPCC p-value is
much less than 0.05. The next section of code illustrates plotting the residuals
and hysteresis metrics. The 1-day lag appears to fit better than the 3-day lag.

> # residuals and hysteresis

> setSweave("graph01", 6, 8)

> AA.lo <- setLayout(num.rows=2)

> setGraph(1, AA.lo)

> AA.pl <- xyPlot(BoyerData$dQ1, residuals(Boyer.lr),

+ ytitle="Residuals", xtitle="1-day lag hysteresis",

+ xaxis.range=c(-1,3))

> addSLR(AA.pl)

> setGraph(2, AA.lo)

> AA.pl <- xyPlot(BoyerData$dQ3, residuals(Boyer.lr),

+ ytitle="Residuals", xtitle="3-day lag hysteresis",

+ xaxis.range=c(-1,3))

> addSLR(AA.pl)

> dev.off()

null device

1
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Figure 1. The residuals versus hysteresis metrics.
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2 Construct and Validate the Hysteresis Model

The model...

> # Construct the model

> Boyer.lr <- loadReg(NO2PlusNO3.N ~ quadratic(log(Flow)) +

+ quadratic(dectime(Date)) + fourier(Date) + dQ1, data=BoyerData,

+ flow="Flow", dates="Date", station=Boyer)

> print(Boyer.lr)

*** Load Estimation ***

Station: 06609500

Constituent: NO2PlusNO3.N

Number of Observations: 101

Number of Uncensored Observations: 101

Center of Decimal Time: 2008.411

Center of ln(Q): 6.4937

Period of record: 2004-03-12 to 2012-09-10

Selected Load Model:

--------------------

NO2PlusNO3.N ~ quadratic(log(Flow)) + quadratic(dectime(Date)) +

fourier(Date) + dQ1

Model coefficients:

Estimate Std. Error z-score

(Intercept) 9.546076 0.045687 208.9442

quadratic(log(Flow))(6.49366)1 0.994584 0.032678 30.4362

quadratic(log(Flow))(6.49366)2 -0.079044 0.012313 -6.4196

quadratic(dectime(Date))(2008.41)1 -0.037313 0.011211 -3.3283

quadratic(dectime(Date))(2008.41)2 -0.009762 0.005713 -1.7088

fourier(Date)sin(k=1) 0.094337 0.044187 2.1350

fourier(Date)cos(k=1) 0.024549 0.042295 0.5804

dQ1 -0.320703 0.067628 -4.7422

p-value

(Intercept) 0.0000

quadratic(log(Flow))(6.49366)1 0.0000

quadratic(log(Flow))(6.49366)2 0.0000

quadratic(dectime(Date))(2008.41)1 0.0007

quadratic(dectime(Date))(2008.41)2 0.0772

fourier(Date)sin(k=1) 0.0279

fourier(Date)cos(k=1) 0.5456
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dQ1 0.0000

AMLE Regression Statistics

Residual variance: 0.07703

R-squared: 95.44 percent

G-squared: 312 on 7 degrees of freedom

P-value: <0.0001

Prob. Plot Corr. Coeff. (PPCC):

r = 0.9652

p-value = 1e-04

Serial Correlation of Residuals: 0.0863

Variance Inflation Factors:

VIF

quadratic(log(Flow))(6.49366)1 2.150

quadratic(log(Flow))(6.49366)2 1.104

quadratic(dectime(Date))(2008.41)1 1.079

quadratic(dectime(Date))(2008.41)2 1.364

fourier(Date)sin(k=1) 1.234

fourier(Date)cos(k=1) 1.181

dQ1 1.510

Comparison of Observed and Estimated Loads

------------------------------------------

Summary Stats: Loads in kg/d

---------------------------------------------

Min 25% 50% 75% 90% 95% Max

Est 215 3000 8400 16400 30700 45700 181000

Obs 166 3010 8230 16600 29400 42800 178000

Bias Diagnostics

----------------

Bp: 0.2131 percent

PLR: 1.002

E: 0.9312

The printed output shows an improved model, but the PPCC test still
indicates lack of normality. A review of the linearity of the explanatory
variables indicates the need for second-order seasonal terms (figure 1). The
sine term is also nonlinear, but not shown. The second order linear time term
will be dropped because it is not significant at the 0.05 level.

> # Plot the overall fit, choose "fourier(Date)cos(k=1)"

> setSweave("graph02", 6, 6)

> plot(Boyer.lr, which="fourier(Date)cos(k=1)", set.up=FALSE)

> dev.off()
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Figure 2. The diagnostic plot for the linearity of a seasonal term.

Construct the revised model that drops the second order time term and adds
the second order seasonal terms. The diagnostic plots follow.

> # Construct the revised model

> Boyer.lr <- loadReg(NO2PlusNO3.N ~ quadratic(log(Flow)) +

+ dectime(Date) + fourier(Date, 2) + dQ1, data=BoyerData,

+ flow="Flow", dates="Date", station=Boyer)

> print(Boyer.lr)

*** Load Estimation ***

Station: 06609500

Constituent: NO2PlusNO3.N

Number of Observations: 101

Number of Uncensored Observations: 101
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Center of Decimal Time: 2008.411

Center of ln(Q): 6.4937

Period of record: 2004-03-12 to 2012-09-10

Selected Load Model:

--------------------

NO2PlusNO3.N ~ quadratic(log(Flow)) + dectime(Date) + fourier(Date,

2) + dQ1

Model coefficients:

Estimate Std. Error z-score p-value

(Intercept) 87.79724 21.30386 4.121 0.0000

quadratic(log(Flow))(6.49366)1 1.00848 0.02737 36.842 0.0000

quadratic(log(Flow))(6.49366)2 -0.08300 0.01165 -7.123 0.0000

dectime(Date) -0.03899 0.01060 -3.676 0.0002

fourier(Date, 2)sin(k=1) 0.08242 0.04082 2.019 0.0364

fourier(Date, 2)cos(k=1) 0.05428 0.03893 1.394 0.1461

fourier(Date, 2)sin(k=2) -0.06361 0.03709 -1.715 0.0746

fourier(Date, 2)cos(k=2) 0.12670 0.03861 3.281 0.0008

dQ1 -0.34407 0.06304 -5.458 0.0000

AMLE Regression Statistics

Residual variance: 0.06958

R-squared: 95.93 percent

G-squared: 323.3 on 8 degrees of freedom

P-value: <0.0001

Prob. Plot Corr. Coeff. (PPCC):

r = 0.9656

p-value = 2e-04

Serial Correlation of Residuals: 0.0449

Variance Inflation Factors:

VIF

quadratic(log(Flow))(6.49366)1 1.670

quadratic(log(Flow))(6.49366)2 1.094

dectime(Date) 1.069

fourier(Date, 2)sin(k=1) 1.165

fourier(Date, 2)cos(k=1) 1.107

fourier(Date, 2)sin(k=2) 1.038

fourier(Date, 2)cos(k=2) 1.033

dQ1 1.453

Comparison of Observed and Estimated Loads

------------------------------------------

Summary Stats: Loads in kg/d
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---------------------------------------------

Min 25% 50% 75% 90% 95% Max

Est 195 3420 8460 15900 33900 46300 193000

Obs 166 3010 8230 16600 29400 42800 178000

Bias Diagnostics

----------------

Bp: 0.2313 percent

PLR: 1.002

E: 0.9379

A complete review of the partial residual graphs is not included in this
example. Only the partial residual for fourier(Date)cos(k=1) is shown to
show that the linearity has improved. No partial residual plot indicates a
serious lack of linearity.

> # Plot the residual Q-normal graph.

> setSweave("graph03", 6, 6)

> plot(Boyer.lr, which = "fourier(Date, 2)cos(k=1)", set.up=FALSE)

> dev.off()

null device

1
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 Second order polynomial test for linearity: p=1

Figure 3. The partial residual for fourier(Date, 2)cos(k=1) graph.

The correlogram indicates a much better seasonal fit and no long-term lack of
fit.

> # Plot the overall fit, choose plot number 2.

> setSweave("graph04", 6, 6)

> plot(Boyer.lr, which = 4, set.up=FALSE)

> dev.off()

null device

1
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Figure 4. The correlogram for the revised model.

For this model, the S-L plot is shown. It shows a slight decrease in
heteroscedasticity as the fitted values increase. The decrease is small and likely
drive by the 3 largest fitted values and there is very little visual decrease in
scatter as the fitted values increase.

> # Plot the S-L grpah.

> setSweave("graph05", 6, 6)

> plot(Boyer.lr, which = 3, set.up=FALSE)

> dev.off()

null device

1
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Figure 5. The S-L graph for the revised model.

The Q-normal graph shows a non-normal distribution, but without distinctive
skewness or kurtosis.

> # Plot the residual Q-normal graph.

> setSweave("graph06", 6, 6)

> plot(Boyer.lr, which = 5, set.up=FALSE)

> dev.off()

null device

1
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Figure 6. The residual Q-normal graph.

The non-normality of the residuals poses at least three potential problems: (1)
lack of confidence in the confidence limits for regression parameter estimates,
(2) bias in the back-transformation corrections for the mean load, and (3) lack
of confidence in the confidence intervals of the load estimate. For the first
potential problem, the confidence intervals of the parameter estimates and
their significance are not critical to load estimation and the non-normality is
not so large that this is a major concern (Greene, 2012). Several factors must
be considered to address the second potential problem—the magnitude of the
bias correction and the measured bias. The actual bias correction factor
(BCF) used is AMLE, which cannot be directly computed, but can be
estimated by using the MLE BCF. The MLE BCF for this model is
exp(0.06958/2) = 1.0354. For non-normal data, Duan’s smoothing BCF is
often used (Helsel and Hirsch, 2002); the value for that BCF is
mean(exp(residuals(Boyer.lr))) = 1.0302. The BCFs are very similar,
which suggests that the bias from the back transform could be small. That is
confirmed by the very small value for the percent bias in the printed report
(0.2405). The third potential problem and no way to address it other than by
using bootstrapping methods. Any reported confidence intervals on loads or
fluxes should be treated as approximate.
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