
Instantaneous Time-Step Model

Dave Lorenz

July 26, 2017

This example illustrates how to set up and use a instantaneous time-step
model. These models are typically used when there is additional explanatory
variable information such as surrogate unit values, like specific conductance.
The intent is often to model both the concentration or flux at any time and
the load over a period of time.

This example uses data from the Bad River near Odanah, Wisc., USGS gaging
station 04027000. The example will build a model of chloride.

> # Load the necessary packages and the data

> library(rloadest)

> library(dataRetrieval)

> # What unit values are available?

> subset(whatNWISdata(siteNumber = "04027000"), data_type_cd=="uv",

+ select=c("parm_cd", "begin_date", "end_date"))

parm_cd begin_date end_date

4 00010 2011-03-03 2017-07-26

14 00060 1986-10-01 2017-07-26

22 00065 2017-03-28 2017-07-26

27 00095 2011-03-06 2017-07-26

33 00300 2011-03-03 2017-07-26

43 00400 2011-03-17 2017-07-26

287 63680 2011-03-17 2017-07-26

> # Get the QW data

> BadQW <- importNWISqw("04027000", "00940",

+ begin.date="2011-04-01", end.date="2014-09-30")

> # Merge data and time and set timezone (2 steps)

> BadQW <- transform(BadQW, dateTime=sample_dt + as.timeDay(sample_tm))

> BadQW <- transform(BadQW, dateTime=setTZ(dateTime, tzone_cd))

> # Now the Unit values data

> BadUV <- readNWISuv("04027000", c("00060", "00095", "00300", "63680"),

1

+ startDate="2011-04-01", endDate="2014-09-30", tz="America/Chicago")

> BadUV <- renameNWISColumns(BadUV)

> names(BadUV)

[1] "agency_cd" "site_no" "dateTime"

[4] "Flow_Inst" "Flow_Inst_cd" "SpecCond_Inst"

[7] "SpecCond_Inst_cd" "DO_Inst" "DO_Inst_cd"

[10] "Turb_Inst" "Turb_Inst_cd" "tz_cd"

> # Strip _Inst off column names

> names(BadUV) <- sub("_Inst", "", names(BadUV))

> # Merge the data

> BadData <- mergeNearest(BadQW, "dateTime", right=BadUV, dates.right="dateTime",

+ max.diff="4 hours")

> # Rename the left-hand dateTime column

> names(BadData)[which(names(BadData)=='dateTime.left')] <- "dateTime"

2

1 Build the Instantaneous Time-Step Model

The first step in building the model is to determine which of the surrogates are
most appropriate to include in the model. There can be many factors that
contribute to deciding which explanatory variables to include in the model.
From previous experience the user may decide to include or exclude specific
surrogates and flow or seasonal terms. For this example, temperature
(parameter code 00010) and pH (parameter code 000400) were excluded as
they typically have very little influence on nitrate or nitrate concentration.
Other factors include the availability of surrogate values. The output in the
code below indicates that NTU Turb has few observations (more missing
values) that Turb, and will not be included in the candidate explanatory
variables.

> # Print the number of missing values in each column

> sapply(BadData, function(col) sum(is.na(col)))

site_no.left sample_dt sample_tm tzone_cd

0 0 0 0

medium_cd Chloride dateTime agency_cd

0 0 0 0

site_no.right dateTime.right Flow Flow_cd

0 0 20 20

SpecCond SpecCond_cd DO DO_cd

16 16 11 11

Turb Turb_cd tz_cd

22 22 0

This example will include the other surrogates and flow and seasonal terms in
the candidate model. The code below demonstrates the use of selBestSubset
to select the initial candidate model.

> # Create and print the candidate model.

> BadChloride.lr <- selBestSubset(Chloride ~ log(Flow) + fourier(dateTime) +

+ log(SpecCond) + log(DO) + log(Turb), data=BadData,

+ flow="Flow", dates="dateTime", time.step="instantaneous",

+ station="Bad River near Odanah", criterion="SPCC")

> print(BadChloride.lr)

*** Load Estimation ***

Station: Bad River near Odanah

Constituent: Chloride

3

Number of Observations: 91

Number of Uncensored Observations: 91

Center of Decimal Time: 2012.573

Center of ln(Q): 6.7484

Period of record: 2011-04-12 07:59:00 to 2014-07-15 14:15:00

Model Evaluation Criteria Based on AMLE Results

Step Df Deviance Resid. Df Resid. Dev SPCC

1 NA NA 83 -48.25 -12.17

2 - log(DO) 1 0.1114 84 -48.14 -16.56

Model # 99 selected

Selected Load Model:

Chloride ~ log(Flow) + fourier(dateTime) + log(SpecCond) + log(Turb)

Model coefficients:

Estimate Std. Error z-score p-value

(Intercept) -8.7861 1.03501 -8.489 0

log(Flow) 1.4927 0.07159 20.851 0

fourier(dateTime)sin(k=1) 0.3321 0.06349 5.230 0

fourier(dateTime)cos(k=1) 0.2807 0.05480 5.122 0

log(SpecCond) 1.8499 0.15775 11.727 0

log(Turb) -0.2885 0.04559 -6.328 0

AMLE Regression Statistics

Residual variance: 0.03693

R-squared: 97.22 percent

G-squared: 326.2 on 5 degrees of freedom

P-value: <0.0001

Prob. Plot Corr. Coeff. (PPCC):

r = 0.9689

p-value = 6e-04

Serial Correlation of Residuals: 0.4165

Variance Inflation Factors:

VIF

log(Flow) 20.535

fourier(dateTime)sin(k=1) 3.278

fourier(dateTime)cos(k=1) 1.195

log(SpecCond) 9.487

log(Turb) 9.058

4

Comparison of Observed and Estimated Loads

--

Summary Stats: Loads in kg/d

Min 25% 50% 75% 90% 95% Max

Est 787 3840 9570 19000 29400 34900 62600

Obs 889 3240 9610 21100 30000 34400 48100

Bias Diagnostics

Bp: 0.5124 percent

PLR: 1.005

E: 0.8784

Only log(DO) was dropped from the model. The printed report indicates some
potential problems with the regression—the PPCC test indicates the residuals
are not normally distributed and several variance inflation factors are
relatively large, greater than 10. But the bias diagnostics show very little bias
in the comparison of the estimated to observed values.

A few selected graphs will help understand the issues identified in the printed
report and suggest an alternative model. Figure 1 shows the residuals versus
fitted graph, which indicates some very large residuals at larger fitted values.
It also suggests some heteroscedasticity in the residual pattern.

> # Plot the overall fit, choose plot number 2.

> setSweave("graph01", 6, 6)

> plot(BadChloride.lr, which = 2, set.up=FALSE)

> dev.off()

null device

1

5

−0.8

−0.6

−0.4

−0.2

 0.0

 0.2

 0.4

 0.6

R
es

id
ua

ls

 6 7 8 9 10 11 12
Fitted

Figure 1. The residuals versus fitted graph.

The S-L plot is not shown. The residual Q-normal graph indicates the reason
for the very low p-value indicated by the PPCC test—the large residual values
indicated in figure 1 skew the distribution.

> # Plot the residual Q-normal graph.

> setSweave("graph02", 6, 6)

> plot(BadChloride.lr, which = 5, set.up=FALSE)

> dev.off()

null device

1

6

−4

−3

−2

−1

 0

 1

 2

 3
St

an
da

rd
iz

ed
 R

es
id

ua
l

−3 −2 −1 0 1 2 3
Normal Quantiles

Figure 2. The residual Q-normal graph.

A complete review of the partial residual graphs is not included in this
example. Only the partial residual for log(Turb) is shown. The graph
indicates the lack of fit, especially for the largest values of Turbidity. This
suggests that the log transform is not appropriate.

> # Plot the residual Q-normal graph.

> setSweave("graph03", 6, 6)

> plot(BadChloride.lr, which = "log(Turb)", set.up=FALSE)

> dev.off()

null device

1

7

−2.5

−2.0

−1.5

−1.0

−0.5

 0.0

Pa
rti

al
 R

es
id

ua
l

1 2 3 4 5 6 7
log(Turb)

 Second order polynomial test for linearity: p=0.1804

Figure 3. The partial residual for log(Turb) graph.

Build the model excluding log(DO) that was dropped in the subset selection
procedure and changing log(Turb) to Turb.

> # Create the and print the revised model.

> BadChloride.lr <- loadReg(Chloride ~ log(Flow) + fourier(dateTime) +

+ log(SpecCond) + Turb, data=BadData,

+ flow="Flow", dates="dateTime", time.step="instantaneous",

+ station="Bad River near Odanah")

> print(BadChloride.lr, load.only=FALSE)

*** Load Estimation ***

Station: Bad River near Odanah

Constituent: Chloride

Number of Observations: 91

Number of Uncensored Observations: 91

Center of Decimal Time: 2012.573

Center of ln(Q): 6.7484

8

Period of record: 2011-04-12 07:59:00 to 2014-07-15 14:15:00

Selected Load Model:

Chloride ~ log(Flow) + fourier(dateTime) + log(SpecCond) + Turb

Model coefficients:

Estimate Std. Error z-score p-value

(Intercept) -8.735913 1.156981 -7.551 0.0000

log(Flow) 1.377223 0.064373 21.395 0.0000

fourier(dateTime)sin(k=1) 0.166961 0.065130 2.564 0.0092

fourier(dateTime)cos(k=1) 0.395459 0.054757 7.222 0.0000

log(SpecCond) 1.822214 0.171909 10.600 0.0000

Turb -0.001286 0.000243 -5.293 0.0000

AMLE Regression Statistics

Residual variance: 0.04086

R-squared: 96.93 percent

G-squared: 317 on 5 degrees of freedom

P-value: <0.0001

Prob. Plot Corr. Coeff. (PPCC):

r = 0.9486

p-value = 0

Serial Correlation of Residuals: 0.3105

Variance Inflation Factors:

VIF

log(Flow) 15.008

fourier(dateTime)sin(k=1) 3.117

fourier(dateTime)cos(k=1) 1.078

log(SpecCond) 10.184

Turb 3.492

Comparison of Observed and Estimated Loads

--

Summary Stats: Loads in kg/d

Min 25% 50% 75% 90% 95% Max

Est 875 3720 10000 19900 29000 35500 56000

Obs 889 3240 9610 21100 30000 34400 48100

Bias Diagnostics

Bp: -0.06404 percent

PLR: 0.9994

9

E: 0.9048

Selected Concentration Model:

Chloride ~ log(Flow) + fourier(dateTime) + log(SpecCond) + Turb

Model coefficients:

Estimate Std. Error z-score p-value

(Intercept) -9.630608 1.156981 -8.324 0.0000

log(Flow) 0.377223 0.064373 5.860 0.0000

fourier(dateTime)sin(k=1) 0.166961 0.065130 2.564 0.0092

fourier(dateTime)cos(k=1) 0.395459 0.054757 7.222 0.0000

log(SpecCond) 1.822214 0.171909 10.600 0.0000

Turb -0.001286 0.000243 -5.293 0.0000

AMLE Regression Statistics

Residual variance: 0.04086

R-squared: 73.65 percent

G-squared: 121.4 on 5 degrees of freedom

P-value: <0.0001

Prob. Plot Corr. Coeff. (PPCC):

r = 0.9486

p-value = 0

Serial Correlation of Residuals: 0.3105

Comparison of Observed and Estimated Concentrations

Summary Stats: Concentrations in mg/l

--

Min 25% 50% 75% 90% 95% Max

Est 1.33 2.01 2.52 2.98 3.75 5.03 5.47

Obs 0.76 1.86 2.47 3.39 3.98 4.47 5.24

Bias Diagnostics

Bp: 0.4076 percent

PCR: 1.004

E: 0.8057

The report for the revised model indicates less severe problems than from the
first candidate model—the p-value for the PPCC test is greater than 0.05, the
variance inflation inflation factors are lower although log(Flow) is still greater
than 10, and the bias diagnostics from the observed and estimated loads and
concentrations are still good.

10

A review of selected diagnostic plots indicates a much better overall fit. Figure
4 shows the residuals versus fitted graph, which indicates a less severe problem
of large residuals at larger fitted values. It also suggests some
heteroscedasticity in the residual pattern as with the first candidate model.

> # Plot the overall fit, choose plot number 2.

> setSweave("graph04", 6, 6)

> plot(BadChloride.lr, which = 2, set.up=FALSE)

> dev.off()

null device

1

−1.0

−0.8

−0.6

−0.4

−0.2

 0.0

 0.2

 0.4

R
es

id
ua

ls

 6 7 8 9 10 11
Fitted

Figure 4. The residuals versus fitted graph for the revised model.

For this model, the S-L plot is shown. It shows an increase in
heteroscedasticity as the fitted values increase. That heteroscedasticity can
introduce bias into the estimated values as the bias correction factor will be a
bit too small for the larger values and too large for the smaller values. The
potential bias for this model is expected to be small because the residual
variance is small, 0.03476 natural log units, therefore the bias correction is

11

very small, less than 2 percent, and the potential change to the bias correction
very small, much less than 1/2 percent.

> # Plot the S-L grpah.

> setSweave("graph05", 6, 6)

> plot(BadChloride.lr, which = 3, set.up=FALSE)

> dev.off()

null device

1

0.0

0.2

0.4

0.6

0.8

1.0

R
es

id
ua

ls

 6 7 8 9 10 11
Fitted

Figure 5. The S-L graph for the revised model.

The residual Q-normal graph shows much better agreement to the normal
distribution than the original candidate model—the effect of the lowest
residuals is much less.

> # Plot the residual Q-normal graph.

> setSweave("graph06", 6, 6)

> plot(BadChloride.lr, which = 5, set.up=FALSE)

> dev.off()

12

null device

1

−5

−4

−3

−2

−1

 0

 1

 2

St
an

da
rd

iz
ed

 R
es

id
ua

l

−3 −2 −1 0 1 2 3
Normal Quantiles

Figure 6. The residual Q-normal graph for the revised model.

A complete review of the partial residual graphs is not included in this
example. Only the partial residual for Turb is shown to compare to the original
model. In this case, the untransformed variable appears to fit reasonably well.

> # Plot the residual Q-normal graph.

> setSweave("graph07", 6, 6)

> plot(BadChloride.lr, which = "Turb", set.up=FALSE)

> dev.off()

null device

1

13

−1.4

−1.2

−1.0

−0.8

−0.6

−0.4

−0.2

 0.0

 0.2

 0.4

Pa
rti

al
 R

es
id

ua
l

 0 200 400 600 800 1000
Turb

 Second order polynomial test for linearity: p=0.0081

Figure 7. The partial residual for Turb graph for the revised model.

14

2 Instantaneous Concentrations

Estimating the instantaneous concentrations or loads from the model is
relatively straight forward. The predConc and predLoad functions will
estimate concentrations or loads, actually fluxes, for any time, given
explanatory variables with no missing values. This example will focus one a
single day, June 30, 2014.

> # Extract one day from the UV data

> Bad063014 <- subset(BadUV, as.Date(as.POSIXlt(dateTime)) == "2014-06-30")

> # Remove the unecessary surrogates from the data set.

> # This reduces the likelihood of missing values in the dataset

> Bad063014 <- Bad063014[, c("dateTime", "Flow", "SpecCond", "Turb")]

> # Simple check

> any(is.na(Bad063014))

[1] FALSE

> # Estimate concetrations

> Bad063014.est <- predConc(BadChloride.lr, Bad063014, by="unit")

> # Display the first and last few rows.

> head(Bad063014.est)

Date Flow Conc Std.Err SEP L95

1 2014-06-30 00:00:00 909 3.206783 0.1701770 0.6766423 2.072006

2 2014-06-30 00:15:00 909 3.190345 0.1669653 0.6725893 2.062188

3 2014-06-30 00:30:00 909 3.202481 0.1693782 0.6755914 2.069423

4 2014-06-30 00:45:00 909 3.202376 0.1693835 0.6755719 2.069352

5 2014-06-30 01:00:00 903 3.194332 0.1679888 0.6736327 2.064487

6 2014-06-30 01:15:00 903 3.135483 0.1609324 0.6602456 2.027796

U95

1 4.751496

2 4.725648

3 4.744757

4 4.744608

5 4.732072

6 4.642401

> tail(Bad063014.est)

Date Flow Conc Std.Err SEP L95

91 2014-06-30 22:30:00 770 2.902802 0.1333234 0.6076208 1.882311

92 2014-06-30 22:45:00 770 2.891596 0.1313947 0.6049664 1.875470

93 2014-06-30 23:00:00 770 2.902618 0.1333370 0.6075870 1.882185

15

94 2014-06-30 23:15:00 764 2.886619 0.1308481 0.6038555 1.872338

95 2014-06-30 23:30:00 764 2.893919 0.1321357 0.6055907 1.876786

96 2014-06-30 23:45:00 758 2.827291 0.1251479 0.5907996 1.834746

U95

91 4.288640

92 4.271298

93 4.288380

94 4.263768

95 4.275082

96 4.174493

> # The daily mean concentration can also be easily estimated

> predConc(BadChloride.lr, Bad063014, by="day")

Date Flow Conc Std.Err SEP L95 U95

1 2014-06-30 829.4792 3.022303 0.1465827 0.6345756 1.957127 4.470139

> # Compare to the mean of the unit values:

> with(Bad063014.est, mean(Conc))

[1] 3.022303

16

3 Aggregate Loads

Estimating concentrations or loads by day assumes, but does not require
consistent number of unit values per day. Both predLoad and predConc

assume that inconsistent number of unit values per day are due to missing
values and return missing values for the estimates for days that do not have
the average number of observations per day. Inconsistent number of
observations per day can be the result of deleted bad values, maintenance, or a
change in frequency of sampling. The data can be resampled to a uniform
number per day using the resampleUVdata function or the check can be
suppressed by setting the allow.incomplete argument to TRUE.

Estimating loads for periods longer than one day requires consistent number of
unit values in each day. The consistent number per day is required to be able
to keep track of within-day and between day variances. The resampleUVdata

function can be used to force a consistent number of unit values per day. It is
not required for this example, but useful when the unit values are not
consistent or when there is a change to or from daylight savings time.

Just as with estimating instantaneous values, missing values are not
permitted. Missing values can occur with surrogates due to short-term
malfunctions, calibration, or long-term malfunctions. Missing values from
short-term malfunctions, generally spikes in the data that are removed during
processing, or that occur during calibrations can easily be interpolated using
the fillMissing function in (smwrBase) and are illustrated in this example.
Longer-term missing values are much more difficult to fix. They require the
careful balancing of need, developing alternate regression models and possible
caveats of the interpretation of loads.

> # Extract one month from the UV data, done in two steps

> Bad0714 <- subset(BadUV, as.Date(as.POSIXlt(dateTime)) >= "2014-07-01")

> Bad0714 <- subset(Bad0714, as.Date(as.POSIXlt(dateTime)) <= "2014-07-31")

> # Remove the unecessary surrogates from the data set.

> # This reduces the likelihood of missing values in the dataset

> Bad0714 <- Bad0714[, c("dateTime", "Flow", "SpecCond", "Turb")]

> # Simple check on each column, how many in each column?

> sapply(Bad0714, function(x) sum(is.na(x)))

dateTime Flow SpecCond Turb

0 0 3 17

> # Fix each column, using the defaults of fillMissing

> Bad0714$SpecCond <- fillMissing(Bad0714$SpecCond)

> Bad0714$Turb <- fillMissing(Bad0714$Turb)

> # Verify filled values

> sapply(Bad0714, function(x) sum(is.na(x)))

17

dateTime Flow SpecCond Turb

0 0 0 0

> # Estimate daily loads

> Bad0714.day <- predLoad(BadChloride.lr, Bad0714, by="day")

> # Display the first and last few rows.

> head(Bad0714.day)

Date Flow Flux Std.Err SEP L95 U95

1 2014-07-01 690.9271 4699.580 199.7177 982.6638 3048.889 6940.518

2 2014-07-02 733.5521 5106.895 229.8322 1074.9831 3303.289 7560.287

3 2014-07-03 702.1146 4780.645 211.0034 1003.4463 3096.201 7070.005

4 2014-07-04 519.5417 3341.828 131.7786 697.7895 2169.380 4932.858

5 2014-07-05 399.8750 2640.163 102.3442 549.5820 1716.231 3892.813

6 2014-07-06 336.1875 2281.347 90.2305 474.6432 1483.324 3363.124

> tail(Bad0714.day)

Date Flow Flux Std.Err SEP L95

26 2014-07-26 204.7604 1515.465 65.50596 316.3818 983.8545

27 2014-07-27 200.3438 1597.807 69.70615 334.8495 1035.5505

28 2014-07-28 275.9167 2396.812 112.83862 502.8753 1552.5920

29 2014-07-29 277.8333 2264.661 102.88114 474.1389 1468.3797

30 2014-07-30 372.5625 3104.713 152.48636 655.0647 2006.1106

31 2014-07-31 477.9062 3808.447 193.80864 803.8597 2460.3980

U95

26 2236.833

27 2361.625

28 3544.064

29 3346.084

30 4600.155

31 5643.657

> # And the month

> Bad0714.mon <- predLoad(BadChloride.lr, Bad0714, by="month")

> Bad0714.mon

Period Ndays Flux Std.Err SEP L95 U95

1 July 2014 31 2878.334 116.7498 119.231 2651.695 3118.992

> # Compare to the results using the approximate standard error:

> # For long periods, the processing time to the exact seopt can be very large

> # and may be desireable to use the approximation.

> predLoad(BadChloride.lr, Bad0714, by="month", seopt="app")

18

Period Ndays Flux Std.Err SEP L95 U95

1 July 2014 31 2878.334 112.6392 119.2305 2651.696 3118.991

> # Compare to the mean of the daily values:

> with(Bad0714.day, mean(Flux))

[1] 2878.334

19

