Using EGRET Data in a rloadest Model

Dave Lorenz

July 26, 2017

This example illustrates how to set up and use data retrieved and processed
for an EGRET (Hirsch and De Cicco, 2015) in a rloadest load model. EGRET
includes the statistical algorithm Weighted Regressions on Time, Discharge,
and Season (WRTDS) that can compute loads and concentrations. WRTDS
uses locally weighted regression on linear time, linear flow (discharge), and the
first-order sine and cosine terms to model constituent concentrations and
fluxes over time and through the range for flow.

This example uses the processed data supplied in the EGRET package, but
any data retrieved and processed by the readNWISDaily, readNWISSample,
readNWISInfo and mergeReport functions in EGRET can be used. The sullied
data are nitrate plus nitrite data collected in the Choptank River near
Greensboro, Maryland (USGS site identifier 01491000).

# Load the necessary packages and the data
library(survival) # required for Surv
library(rloadest)

library (EGRET)

# Get the QW and daily flow data
Chop.QW <- Choptank_eList$Sample
Chop.Q <- Choptank_eList$Daily
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1 Compute the Initial rloadest Model

The 7-parameter model (model number 9) is a typical model for relatively
long-term records, longer than about 7 years and can be a good starting point
for building a good model. The water-quality data in the Sample dataset for
EGRET is stored in four columns—the minimum value, maximum value, an
indicator of censoring, and the average value. That format can be converted to
a valid response variable for loadReg using either as.mcens or Surv; Surv is
preferred because if the data are uncensored or left-censored, then the
"AMLE” method is used rather that the "MLE” method, which is always used
with a response variable of class "mcens.”

> # Compute the 7-parameter model.

> Chop.1lr <- loadReg(Surv(ConcLow, ConcHigh, type="interval2") ~ model(9),
+ data=Chop.QW, flow="Q", dates="Date", conc.units="mg/L",

+ flow.units="cms", station="Choptank")

One of the first steps in assessing the fit is to look at the diagnostic plots for
the linearity of the overall fit and each explanatory variable. The overall fit
(figure 1) looks linear, but there are three low outliers and a tendency to larger
scatter at larger predicted values

> # Plot the overall fit

> setSweave("graph01", 6, 6)

> plot(Chop.lr, which=1, set.up=FALSE)
> dev.off ()

null device
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Fitted: Surv(ConcLow, ConcHigh, type = "interval2") ~ model(9)

Figure 1. The overall fit.

The linearity of the explanatory variables is shown in figure 2. The partial
residual plots for flow (InQ and InQ2) show nonlinearity in the second order
(InQ2). The partial residual plots for time (DECTIME and DECTIME2) show
no nonlinearity, but the second-order term (DECTIME2) shows no trend and
can therefore be removed from the model. The partial residual plots for
seasonality (DECTIME and DECTIME2) show nonlinearity in both terms,
suggesting the need for higher order seasonal terms.

> # Plot the explanatory variable fits

> setSweave ("graph02", 6, 9)

> AA.lo <- setLayout (num.rows=3, num.cols=2)
> # Flow and flow squared

> setGraph(1, AA.lo)

> plot(Chop.lr, which="1nQ", set.up=FALSE)

> setGraph(2, AA.lo)

> plot(Chop.lr, which="1n@2", set.up=FALSE)
> # Time and time squared

> setGraph(3, AA.lo)

> plot(Chop.lr, which="DECTIME", set.up=FALSE)



setGraph(4, AA.lo)

plot(Chop.1lr, which="DECTIME2", set.up=FALSE)

# Seasonality

setGraph(5, AA.lo)

plot(Chop.1lr, which="sin.DECTIME", set.up=FALSE)
setGraph(6, AA.lo)

plot(Chop.1lr, which="cos.DECTIME", set.up=FALSE)
dev.off ()

vV VVVVYVVYV

null device
1



Second order polynomial test for linearity: p=1 . Second order polynomial test for linearity: p=0.0286
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Figure 2. The linearity of the explanatory variables.

Figure 3 shows the relation between concentration and flow. The relation is
not quadratic, but it appears that there is a distinct change at about 10 cubic
meters per second. That relation can be modeled using piecewise linear, or
segmented, terms.

> # Plot tconcentration and flow
> setSweave ("graph03", 6, 6)
> # Use the average concentration (only one censored value)



> with(Chop.QW, xyPlot(Q, ConcAve, yaxis.log=TRUE, xaxis.log=TRUE))
> dev.off ()

null device
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Figure 3. The relation between concentration and flow.



2 Construct the Modified rloadest Model

The segLoadReg can be used to build a piecewise linear model. It relies on the
segmented package, which cannot model censored data to identify the
breakpoints. For the first step censored values will be approximated by simple
substitution; for the final model, the censored values are restored. One other
quirk of segLoadReg is that the response term must be a variable, it cannot be
constructed using Surv or any other function. Therefore, the breakpoint for
this model will be identified using ConcAve, but the final model will be built
using the censoring information.

# Compute the breakpoint--the seg term must be the first term on
# the right-hand side.
Chop.1lr <- segLoadReg(ConcAve
fourier (DecYear, 2),
data=Chop.QW, flow="Q", dates="Date", conc.units="mg/L",
flow.units="cms", station="Choptank")

seg(LogQ, 1) + DecYear +

+ + + Vv VvV

Segmented regression results:
AIC:

1Im sm
405.344 334.227
Breakpoints (psi):

Initial Est. St.Err
psil 1.211 1.994 0.1532

# From the printed output, the breakpoint is 1.994 in natural log units,

# about 7.4 cms

# Compute and print the final model

Chop.1lr <- loadReg(Surv(ConcLow, ConcHigh, type="interval2")

segment (LogQ, 1.994) + DecYear + fourier(DecYear, 2),

data=Chop.QW, flow="Q", dates="Date", conc.units="mg/L",
flow.units="cms", station="Choptank")

print (Chop.1r)

vV + + + VvV VvyVv

***% [oad Estimation ***

Station: Choptank
Constituent: Surv(ConcLow, ConcHigh, type = "interval2")

Number of Observations: 606
Number of Uncensored Observations: 605
Center of Decimal Time: 1996.735
Center of 1n(Q): 1.3098



Period of record: 1979-10-24 to 2011-09-29

Selected Load Model:

Surv(ConcLow, ConcHigh, type = "interval2") ~ segment(LogQ, 1.994) +
DecYear + fourier(DecYear, 2)

Model coefficients:
Estimate Std. Error z-score p-value

(Intercept) -17.886811 2.938636 -6.08677 0e+00
segment (LogQ, 1.994)X 0.948716 0.018697 50.74174 0e+00
segment (LogQ, 1.994)U1 -0.338732 0.040304 -8.40445 0e+00
segment (LogQ, 1.994)P1 0.001323 0.050014 0.02646  1e+00
DecYear 0.011303 0.001473 7.67280 0e+00
fourier (DecYear, 2)sin(k=1) 0.113551 0.021330 5.32351 0e+00
fourier (DecYear, 2)cos(k=1) 0.143342 0.018775 7.63469 0e+00
fourier (DecYear, 2)sin(k=2) 0.057079 0.017424 3.27584 1e-03
fourier (DecYear, 2)cos(k=2) 0.060241 0.017818 3.38097 7e-04

AMLE Regression Statistics
Residual variance: 0.09136
Generalized R-squared: 94.75 percent
G-squared: 1786 on 8 degrees of freedom
P-value: <0.0001
Prob. Plot Corr. Coeff. (PPCC):
r = 0.9608
p-value = 0
Serial Correlation of Residuals: 0.2493

Variance Inflation Factors:

VIF
segment (LogQ, 1.994)X 4.647
segment (LogQ, 1.994)U1 3.490
segment (LogQ, 1.994)P1 3.373
DecYear 1.032
fourier (DecYear, 2)sin(k=1) 1.499
fourier (DecYear, 2)cos(k=1) 1.165
fourier (DecYear, 2)sin(k=2) 1.048
fourier (DecYear, 2)cos(k=2) 1.010

Comparison of Observed and Estimated Loads

Min 25% 50% 75% 90% 95% Max



Est 12.70 122 364 920 1660 2090 4350
Obs 2.02 116 352 911 1670 1990 11900

Bias Diagnostics

Bp: -0.4405 percent
PLR: 0.9956

E: 0.7596

This segmented model has three variables— with names ending in X, U1, and
P1. The coefficient for the variable ending in X is the slope for the variable
less that the breakpoint, the coefficient for the variable ending in Ul is the
change in slope above the breakpoint, and the coefficient for the variable
ending in P1 should always be close to 0.

No partial residual plot indicates any nonlinearity. Figure 4 shows 5 selected
partial residual plots.

# Plot the explanatory variable fits

setSweave ("graph04", 6, 9)

AA.lo <- setLayout (num.rows=3, num.cols=2)

# Segmented flow

setGraph(1, AA.lo)

plot(Chop.1lr, which="segment (LogQ, 1.994)X", set.up=FALSE)
setGraph(2, AA.lo)

plot(Chop.lr, which="segment (LogQ, 1.994)U1", set.up=FALSE)

# Time

setGraph(3, AA.lo)

plot(Chop.1lr, which="DecYear", set.up=FALSE)

# Seasonality

setGraph (5, AA.lo)

plot(Chop.lr, which="fourier(DecYear, 2)sin(k=2)", set.up=FALSE)
setGraph(6, AA.lo)

plot(Chop.1lr, which="fourier(DecYear, 2)cos(k=2)", set.up=FALSE)
dev.off ()

VVVVVVVVVVVVVVVYVYV
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Second order polynomial test for linearity: p=0.6124 Second order polynomial test for linearity: p=0.8498
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Figure 4. Partial residual plots.
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3 Further Considerations

Although not specifically stated by Runkel and others (2004), rloadest is
designed to model constituent loads over time periods from about 2 to 10
years. The 2-year minimum is a practical limit based on a minimum number of
samples required to build a good model. The 10-year period is based on the
application by Cohn (personal communication, February 2006) for Chesapeake
Bay load estimates. For time periods longer than about 10 years, both trends
and the flow-concentration relation can require additional modeling tools
(Vecchia, 2000). WRTDS accounts for those long-term changes by using
locally weighted regression.

To determine if there are unmodeled flow dependencies in the load model, the
mean residual by water year can be compared to the mean flow by water year.
The R code immediately following this paragraph computes those means and
graphs the relation over time. There appears to be a strong correlation
between the mean residual, in black, and the mean annual flow, in red. This
relation is different from the relation between the residual and observed flow,
which is correctly modeled as indicated by the partial residual plots.

V+V+VVVVVVVVVYV

# Compute the mean residual and flow by water year

MeanRes <- tapply(residuals(Chop.lr), waterYear(Chop.(QW$Date), mean)

MeanQ <- with(Chop.Q, tapply(LogQl, waterYear (Date), mean))

# Get the years and convert the means to scaled vectors (for plotting)

MeanWY <- as.integer (names (MeanQ))

MeanRes <- as.vector(scale(MeanRes))

Mean@} <- as.vector(scale(Mean(l))

# Plot them

setSweave ("graph05", 6, 6)

AA.pl <- timePlot(MeanWY, MeanRes, Plot=list(what="overlaid"),
yaxis.range=c(-2.5, 2.5))

addXY (MeanWY, Mean(], Plot=1ist(what="overlaid", color="red"),
current=AA.pl)

dev.off ()

null device

1
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Figure 5. Mean residuals and mean flow.

Streamflow anomalies, described by Vecchia (2000), cannot be used directly in
this model because it is a segmented model. For an example where flow
anomalies can be used, see the Application 3, Analysis of an Censored
Constituent using a Seasonal Model. For these data, a flow dependence
can be computed that incorporates the average log flow for a previous period
of time. The R code immediately following this paragraph, retrieves the flow
data for 1 year prior to the beginning of the analysis period and computes the
mean log flow for 3-, 6-, 9-, and 12-months. The movingAve function in
smwrBase is used to compute those flow dependencies. The mergeQ function in
smwrBase is used to extract the computed columns into the calibration
dataset. The largest correlation between the residuals and the flow
dependencies is the 3-month period, but the 12-month is nearly as large.

# Retrieve the flow data , beginning 1978-10-01, and compute log flowe in cms
Chop.ExQ <- renameNWISColumns (readNWISdv(
"01491000", "00060", "1978-10-01", "2011-09-30"))
Chop.ExQ$Logl] <- log(Chop.ExQ$Flow/35.31467)
# Compute the Dependencies
Chop.ExQ <- transform(Chop.ExQ,

vV V.V + VvV
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Dep3mo=movingAve (LogQ, 91, pos="trailing"),
Dep6mo=movingAve (LogQ, 182, pos="trailing"),
Dep9mo=movingAve (LogQ, 273, pos="trailing"),
Dep12mo=movingAve (Log], 365, pos="trailing"))
# Merge the dependencies into the calibration dataset
Chop.ExQW <- merge@(Chop.QW, FLOW=c("Dep3mo", "Dep6mo", "Dep9mo", "DeplZ2mo"),
DATES="Date", (data=Chop.Ex{, Plot=FALSE)
> # Which has the largest correlation?
> cor(residuals(Chop.1lr), Chop.ExQW[c("Dep3mo", "Dep6mo", "Dep9mo", "Depl2mo")])

+ VV + o+ o+ o+

Dep3mo Dep6mo Dep9mo  Depl2mo
[1,]1 0.1285903 0.1155899 0.1189847 0.1267015

One more consideration for factors that affect flow is the hysteresis in
concentration between rising and falling flows. The hysteresis function in
smwrBase can be used to construct a variable that can model differences in
concentration between rising and falling limbs of the hydrograph. The R code
immediately following this paragraph computes that hysteresis based on a 1
day time step, which would be appropriate for this small basin. The
correlation is quite large, so it should be included in the model.

# Compute the Hysterisis and merge into the new calibration data set
Chop.ExQ <- transform(Chop.ExQ, Hyl=hysteresis(LogQ, 1))
# Merge into the calibration dataset
Chop.ExQW <- merge@l(Chop.ExQW, FLOW="Hy1",
DATES="Date", Qdata=Chop.ExQ, Plot=FALSE)
# Is it correlated with the residuals?
cor(residuals(Chop.1lr), Chop.ExQW$Hy1)

vV V + VVvVvyv

[1] 0.1242115

One final possibility, nonlinearities in the trend, must be considered. For some
data the nonlinearities are very apparent, but they are more subtle for these
data. There can be many approaches to describing the nonlinearities in trend:
a second-order polynomial, using the quadratic function in smwrBase;
higher-order polynomials using poly in base; piecewise linear terms using
trends in smwrStats; and piecewise curvilinear terms using curvi in
smwrStats. For most data, the partial residual plot over time would suggest
any nonlinearity. Figure 6 shows that these data are very noisy, indicate very
little deviation from a linear trend, but show the possibility of some leveling
off in trend for a short period around 1995. Possible approaches for modeling
the trend include piecewise linear with breaks around 1991 and 1998,
curvilinear trends with midpoints at 1980 and 2010 with half-widths of 15
years (meeting in 1995), and a simple linear trend. For this example, the
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simple linear trend was selected because it was the simplest model, the
absolute values of the coefficient of variation of the jackknife bias were all less
than 0.25, and had good performance on the bias statistics. The code for the
jackknife estimates is shown in the box below, but not executed.

# The simple linear trend

jackStats(loadReg(Surv(ConcLow, ConcHigh, type="interval2") ~
segment (LogQ, 1.994) + DecYear +

fourier (DecYear, 2) + Hyl + Dep3mo,

data=Chop.ExQW, flow="Q", dates="Date", conc.units="mg/L",
flow.units="cms", station="Choptank"))

# The piecewise linear trend

jackStats(loadReg(Surv(ConcLow, ConcHigh, type="interval2") ~
segment (LogQ, 1.994) + trends(DecYear, c(1991, 1998)) +
fourier (DecYear, 2) + Hyl + Dep3mo,

data=Chop.ExQW, flow="Q", dates="Date", conc.units="mg/L",
flow.units="cms", station="Choptank"))

# And the curvilinear trend

jackStats(loadReg(Surv(ConcLow, ConcHigh, type="interval2") ~
segment (LogQ, 1.994) + curvi(DecYear, c(1980, 15, 2010, 15)) +
fourier (DecYear, 2) + Hyl + Dep3mo,

data=Chop.ExQW, flow="Q", dates="Date", conc.units="mg/L",
flow.units="cms", station="Choptank"))

> # Compute the extended load regression exluding time

> Chop.1lrEx <- loadReg(Surv(ConcLow, ConcHigh, type="interval2") ~
+ segment (Log], 1.994) +

+ fourier(DecYear, 2) + Hyl + Dep3mo,

+ data=Chop.ExQW, flow="Q", dates="Date", conc.units="mg/L",

+ flow.units="cms", station="Choptank")

> # Use the functions in smwrGraphs to easily add the smooth line
> # Plot the residuals over time (decimal year)

> # zooming in to the bulk of the residuals

> setSweave ("graph06", 6, 6)

> AA.pl <- xyPlot(Chop.QW$DecYear, residuals(Chop.lrEx),

+ xtitle="Decimal Time", ytitle="Partial Residual",

+ yaxis.range=c(-1,1))

> # Add a smmothed line, setting family to "gaussian'"--better for regression
> addSmooth(AA.pl, family="gaussian")

> dev.off ()

null device
1
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Figure 6. The temporal residual trend with smoothed line.

The extended model can now be built. The R code following this paragraph
extends the model created in the previous section by adding hysteresis, the
flow dependency terms, and the linear trend term. The printed result indicates
that all terms, are significant at the 0.05 alpha level and the bias diagnostics
indicate very good agreement between the observed and estimated loads. The
diagnostic plots are not shown; the g-normal residual plot shows a lack of
agreement with the normal distribution as indicated by the PPCC section of
the report; the correlogram indicates serial correlation, which agrees with the
printed report; and the partial residual plots show no issues, with the possible
exception of some nonlinearity with the hysteresis term(Hy1).

> # Compute and print the Extended model

> Chop.1lrEx <- loadReg(Surv(ConcLow, ConcHigh, type="interval2")
+ segment (LogQ, 1.994) + trends(DecYear, c(1991, 1998)) +

+ fourier(DecYear, 2) + Hyl + Dep3mo,

+ data=Chop.ExQW, flow="Q", dates="Date", conc.units="mg/L",
+

>

flow.units="cms", station="Choptank")
print (Chop. 1rEx)

15



***% [Load Estimation ***

Station: Choptank
Constituent: Surv(ConcLow, ConcHigh, type = "interval2")

Number of Observations: 606
Number of Uncensored Observations: 605
Center of Decimal Time: 1996.735
Center of 1n(Q): 1.3098
Period of record: 1979-10-24 to 2011-09-29

Selected Load Model:

Surv(ConcLow, ConcHigh, type = "interval2") ~ segment(LogQ, 1.994) +
trends (DecYear, c(1991, 1998)) + fourier(DecYear, 2) + Hyl +
Dep3mo

Model coefficients:

Estimate Std. Error
(Intercept) 4.3212153 0.055617
segment (LogQ, 1.994)X 0.8793154 .020170
segment (LogQ, 1.994)U1 -0.2999984 .039268
segment (LogQ, 1.994)P1 -0.0009728 .048141
trends (DecYear, c(1991, 1998))1979-1991 0.0273868 .006009

0
0
0
0
trends (DecYear, c(1991, 1998))1991-1998 -0.0092955 0.006213
trends(DecYear, c(1991, 1998))1998-2012 0.0172429 0.003891
fourier (DecYear, 2)sin(k=1) 0.0472512 0.023589
fourier (DecYear, 2)cos(k=1) 0.2107569  0.020295
fourier (DecYear, 2)sin(k=2) 0.0708631 0.016731
fourier (DecYear, 2)cos(k=2) 0.0438938 0.017155
Hy1l 0.1233410 0.024861
Dep3mo 0.1405516 0.021300
z-score p-value
(Intercept) 77.69572 0.0000
segment (LogQ, 1.994)X 43.59598 0.0000
segment (LogQ, 1.994)U1 -7.63978 0.0000
segment (LogQ, 1.994)P1 -0.02021 0.9825
trends(DecYear, c(1991, 1998))1979-1991 4.55748 0.0000
trends(DecYear, c(1991, 1998))1991-1998 -1.49616 0.1296
trends (DecYear, c(1991, 1998))1998-2012 4.43150 0.0000
fourier (DecYear, 2)sin(k=1) 2.00313 0.0438
fourier (DecYear, 2)cos(k=1) 10.38442 0.0000
fourier (DecYear, 2)sin(k=2) 4.23552 0.0000
fourier (DecYear, 2)cos(k=2) 2.55868 0.0101
Hy1 4.96114 0.0000
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Dep3mo

AMLE Regression Statistics
Residual variance: 0.08297
Generalized R-squared: 95.26 percent
G-squared: 1848 on 12 degrees of freedom
P-value: <0.0001
Prob. Plot Corr. Coeff. (PPCC):
r = 0.9561
p-value = 0
Serial Correlation of Residuals: 0.2382

Variance Inflation Factors:

segment (LogQ, 1.994)X

segment (LogQ, 1.994)U1

segment (LogQ, 1.994)P1

trends (DecYear, c(1991, 1998))1979-1991
trends (DecYear, c(1991, 1998))1991-1998
trends (DecYear, c(1991, 1998))1998-2012
fourier (DecYear, 2)sin(k=1)

fourier (DecYear, 2)cos(k=1)

fourier (DecYear, 2)sin(k=2)

fourier (DecYear, 2)cos(k=2)

Hy1l

Dep3mo

N, PP FEPNDNERLNDNE OO

6.59866 0.0000

VIF
.9565
.648
.441
127
.909
971
.018
.499
.063
.031
.296
.790

Comparison of (Observed and Estimated Loads

Min 25% 50% 75% 90% 95% Max
Est 12.10 124 376 928 1610 2140 4970
Obs 2.02 116 352 911 1670 1990 11900

Bias Diagnostics

Bp: -0.1761 percent
PLR: 0.9982

E: 0.7852
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4 WRTDS and rloadest Model Comparisons

A thorough comparison of the WRTDS and rloadest models is beyond the
scope of this vignette, but it is possible to find some commonalities and
differences between the models. The first step is top compute the residuals for
the WRTDS model. For simplicity, the average concentration is used, which
has very little effect for the one censored value. The R code following this
paragraph computes the residuals and plots the water-year series of box plots
for the WRTDS, modified, and extended load models.

> # Compute the WRTDS residuals and the water year

> Chop.QW <- transform(Chop.QW, Res=log(ConcAve) - yHat,

+ WY=waterYear (Date, numeric=FALSE))

> # Graph the residuals

> setSweave ("graph07", 6, 9)

> AA.lo <- setLayout (num.rows=3, shared.x=1)

> # The WRTDS residuals over time

> AA.mr <- setGraph(1, AA.lo)

> with(Chop.QW, boxPlot (Res, group=WY, Box=1list (show.counts=FALSE),
+ yaxis.range=c(-1,1), xlabels.rotate=TRUE, margin=AA.mr))
> refLine (horizontal=0)

> addTitle(Main="WRTDS", Position="inside'", Bold=FALSE)

> # Modified residuals over time

> AA.mr <- setGraph(2, AA.lo)

> with(Chop.QW, boxPlot (residuals(Chop.lr), group=WY,

+  Box=list(show.counts=FALSE),

+ yaxis.range=c(-1,1), xlabels.rotate=TRUE, margin=AA.mr))
> refLine (horizontal=0)

> addTitle(Main="Modified", Position="inside", Bold=FALSE)

> # Extended residuals over time

> AA.mr <- setGraph(3, AA.lo)

> with(Chop.QW, boxPlot (residuals(Chop.lrEx), group=WY,

+  Box=list(show.counts=FALSE),

+ yaxis.range=c(-1,1), xlabels.rotate=TRUE, margin=AA.mr))
> refLine (horizontal=0)

> addTitle(Main="Extended", Position="inside", Bold=FALSE)

> dev.off ()

null device
1
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Figure 7. Residual box plots by water year for each of the models.

The pattern of the boxes, or individual values when there are five or fewer
values in a water year, are very similar—the medians and ranges of the boxes
are generally in the same direction from the 0 line among the models. This
suggests that the WRTDS and the load models are very similar in their
description of the concentrations and loads. But there is one major
difference—the residuals of the extended model are much closer to the 0 line
than the other two. The number of cases where the box lies outside of the 0
line or all individual values lie on one side is 11 for the WRTDS model 1982,
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1984, 1986, 1990, 1993, 1995, 1997, 2001, 2003, 2006, and 2007; 8 for the
modified model 1982, 1984, 1985, 1990, 1993, 1995, 1997, and 2007; but only 2
for the extended model 1982 and 1993. That suggests that the addition of flow
dependency and hysteresis reduced annual bias in the model. However, there
remain persistent patterns of bias—for example the median residual is greater
than 0 for all models from 1989 through 1993, suggesting that concentration or
load estimates for that time could be biased and that the model could be
improved.

The extended load model uses 11 parameters: the intercept, three terms for
flow, decimal time, four parameters for seasonality and the hysteresis and flow
dependency terms. Cleveland and others (1996) describe a method to compute
the equivalent number of parameters for local regression (the foundation for
WRTDS). Applying their method to the WRTDS Choptank Nitrate plus
Nitrite model results in the equivalent of 32.4 parameters, far more than were
used in the extended load model.

Concentration and load modeling is both art and science. The knowledge of
water chemistry and an understanding of the dynamics of the hydrologic
system are required to paint a picture of the concentration or load. WRTDS
can be expected to produce a good and useful model, but with extra effort, the
modeling capabilities in the rloadest package can yield a better
understanding of the dynamics. The practitioner must balance needs and
effort.
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