
Application 2: Analysis of an Uncensored

Constituent using a Seasonal Model

Dave Lorenz

July 26, 2017

This example illustrates the construction of a rating-curve load model
from a user-defined formula rather than a predefined rating curve model. It
also demonstrates how to make load estimates for data outside of the
calibration data.

Many constituents are subject to seasonal loading patterns that are
driven by external factors such as the length of the growing season, air
temperature, and anthropogenic activities. Some of the predefined models
implement sine and cosine terms to reflect the seasonality of constituent load.
These models are applicable to constituents that change continuously over the
seasonal cycle, but are not appropriate for other constituents that are subject
to an abrupt seasonal change. Such is the case for pesticides, where springtime
application results in a distinct change in the loading pattern for a discrete
period of time (fig. 1). When such changes are evident in the data, it often is
beneficial to use categorical explanatory variables, often called dummy
variables in older literature, (Judge and others, 1988; Helsel and Hirsch, 2002)
to handle the abrupt change.

In this example, data from the St. Joseph River near Newville, Ind., is
used with a user-defined periodic seasonal model to estimate atrazine loads.
Observations of atrazine load show two distinct relations with regard to
streamflow; for a given streamflow, atrazine loads are elevated during the 3
month period following pesticide application, May through July, and
dramatically lower thereafter. This two-tiered loading response is modeled
using the categorical explanatory variables present in per,

log(Loadi) = α0 + α1peri + α2lnQi + α3perilnQi + εi, (1)

where lnQi is the centered log of streamflow and peri is a categorical variable
that indicates the seasonal period for observation i. The regression line for
estimation during the May though July time period will have an intercept
equal to a0+a1, and a slope of a2+a3. For the other time period (August
through April), per will equal 0 and the regression equation corresponds to the
simple model used in Application 1.

1

Part 2 illustrates the diagnostic graphs that can be used to verify the
model assumptions or improve the model. A seasonal-wave approach to
modeling seasonal is introduced and other graphs to help better understand
the model.

> # Load the rloadest package and the data

> library(rloadest)

> data(app2.calib)

> head(app2.calib)

DATES TIMES FLOW Atrazine

1 1996-03-07 1130 570 0.15

2 1996-04-30 845 945 0.19

3 1996-05-07 815 627 0.18

4 1996-06-04 830 428 0.55

5 1996-06-19 900 2070 16.00

6 1996-07-19 830 132 1.40

> # Plot the seasonal pattern of Atrazine

> # setSweave is required for the vignette.

> setSweave("app2_01", 5, 5)

> with(app2.calib, seasonPlot(DATES, Atrazine, yaxis.log=TRUE))

> graphics.off()

0.01

0.10

1.00

10.00

100.00

At
ra

zi
ne

Jan. Feb. Mar. Apr. May June July Aug. Sept. Oct. Nov. Dec.

2

Figure 1. The seasonal pattern of atrazine concentrations.

3

1 Build the Model

The first step is to create the categorical explanatory variable in the
calibration data set. That is easily done using the seasons function, which is
in the USGSwsBase package. The order of the breaks argument in seasons

must be sequential through the year, but can overlap the end of the year.

> # Add Period to the calibration data.

> app2.calib <- transform(app2.calib, Period=seasons(DATES,

+ breaks=c("Apr", "Jul")))

The loadReg function is used to build the rating-curve model for
constituent load estimation. The basic form of the call to loadReg is similar to
the call to lm in that it requires a formula and data source. The response
variable in the formula is the constituent concentration, which is converted to
load per day (flux) based on the units of concentration and the units of flow.
The conc.units, flow.units, and load.units arguments to loadReg define
the conversion. For these data, the concentration units (conc.units) are
”ug/L”, the flow units are ”cfs” (the default), and the load units for the model
are ”pounds.” Two additional pieces of information are required for
loadReg—the names of the flow column and the dates column. A final option,
the station identifier, can also be specified.

User defined models can be constructed using using the usual rules for
constructing regression models in R. For this example, we’ll take advantage of
the * operator to add both the period and log centered flow terms and the
interaction term. Details of the differences between the printed output from
LOADEST and rloadest were described in application 1, so the short form is
printed in this example.

> # Create and print the load model.

> app2.lr <- loadReg(Atrazine ~ Period*center(log(FLOW)), data = app2.calib,

+ flow = "FLOW", dates = "DATES", conc.units="ug/L",

+ load.units="pounds",

+ station="St.Joseph River near Newville, Ind.")

> # Warnings are not printed in the vignette

> warnings()

NULL

> app2.lr

*** Load Estimation ***

Station: St.Joseph River near Newville, Ind.

Constituent: Atrazine

4

Number of Observations: 32

Number of Uncensored Observations: 32

Center of Decimal Time: 1997.034

Center of ln(Q): 6.1625

Period of record: 1996-03-07 to 1997-11-18

Selected Load Model:

Atrazine ~ Period * center(log(FLOW))

Model coefficients:

Estimate Std. Error

(Intercept) -0.4097 0.2154

PeriodSeason Ending Jul 2.4074 0.3268

center(log(FLOW)) 0.8366 0.1959

PeriodSeason Ending Jul:center(log(FLOW)) 1.2005 0.3392

z-score p-value

(Intercept) -1.902 0.0486

PeriodSeason Ending Jul 7.366 0.0000

center(log(FLOW)) 4.271 0.0001

PeriodSeason Ending Jul:center(log(FLOW)) 3.540 0.0006

AMLE Regression Statistics

Residual variance: 0.8355

R-squared: 80.87 percent

G-squared: 52.93 on 3 degrees of freedom

P-value: <0.0001

Prob. Plot Corr. Coeff. (PPCC):

r = 0.9378

p-value = 0.003

Serial Correlation of Residuals: 0.2667

Variance Inflation Factors:

VIF

PeriodSeason Ending Jul 1.007

center(log(FLOW)) 1.504

PeriodSeason Ending Jul:center(log(FLOW)) 1.511

Comparison of Observed and Estimated Loads

--

Summary Stats: Loads in pounds/d

Min 25% 50% 75% 90% 95% Max

Est 0.18 0.70 1.68 5.65 45.2 79.2 198

5

Obs 0.16 0.42 1.14 2.99 89.1 120.0 179

Bias Diagnostics

Bp: -14.06 percent

PLR: 0.8594

E: 0.8641

6

2 Estimate Loads

Unlike LOADEST, rloadest requires to the user to build the rating-curve
model before estimating loads and will only estimate loads for one type of
aggregation at a time, for example total load or loads by season. Before we
can estimate loads, we need to get the data and add the same seasonal
definition that was used to build the load model.

> # Load the estimation data and add Period

> data(app2.est)

> app2.est <- transform(app2.est, Period=seasons(DATES,

+ breaks=c("Apr", "Jul")))

The predLoad function is used to estimate loads. It estimates loads in
units per day, which is referred to as flux in rloadest. The arguments for
predLoad are fit, the model output from loadReg; newdata, the estimation
dataset; load.units, the load units for the estimates, which are taken from
the model output if not specified; by, a character string indicating how to
aggregate the load estimates; sd, how to compute the standard error of the
load; allow.incomplete, a logical value that indicates whether or not to allow
incomplete periods to be estimated; and print, indicating whether to print a
summary.

Unlike the predict function in base R, newdata is required. The
columns in newdata must match the column names in the calibration dataset.
For predefined models, the column names for dates and flow must match.

The by argument must be ”unit,” ”day,”, ”month,” ”water year,”
”calendar year,” ”total,” or the name of a grouping column in newdata. The
”unit” option is not available in version 0.1.

The argument sd must be ”exact” in version 0.1. Any other value will
not give correct values. The argument allow.incomplete is not fully
implemented in version 0.1.

The total load estimate for Application 2 that matches that in
LOADEST can be made using call in the R code below.

> predLoad(app2.lr, newdata = app2.est, by="total",

+ print=TRUE)

Constituent Output File Part IIa: Estimation (test for extrapolation)

Load Estimates for 1996-03-01 to 1998-02-28

Streamflow Summary Statistics

7

WARNING: The maximum estimation data set steamflow exceeds the maximum

calibration data set streamflow. Load estimates require extrapolation.

Constituent Output File Part IIb: Estimation (Load Estimates)

Load Estimates for 1996-03-01 to 1998-02-28

Flux Estimates, in pounds/d, using AMLE

--

Period Ndays Flux Std.Err SEP L95 U95

1 total 730 21.63485 19.86159 21.05066 3.131524 76.77985

To create the matching seasonal loads in LOADEST, a column that
defines the seasons must be added to the estimation data set. That can also be
accomplished using the seasons function as shown below. The order of the
seasons will be different from LOADEST, but the season names will make
sense.

> app2.est <- transform(app2.est, Season=seasons(DATES,

+ breaks=c("Jan", "Apr", "Jul", "Oct")))

The seasonal load estimates for Application 2 that matches that in LOADEST
can be made using call in the R code below. In this case, we’ll save the output
dataset and print it.

> app2.seas <- predLoad(app2.lr, newdata = app2.est, by="Season")

> app2.seas

Period Ndays Flux Std.Err SEP

1 Season Ending Jan 184 1.5055248 0.4645424 0.4892784

2 Season Ending Apr 178 1.8121571 0.6163888 0.6437245

3 Season Ending Jul 184 82.0341969 78.7623286 83.4815220

4 Season Ending Oct 184 0.5411122 0.1430111 0.1572237

L95 U95

1 0.7694202 2.6644482

2 0.8688689 3.3560436

3 11.0154468 300.1206683

4 0.2974099 0.9078635

8

3 Diagnostic Plots

Figure 2 shows the AMLE 1:1 line as a dashed line and the solid line is a
LOWESS smooth curve. The LOWESS curve indicates departure from
regression line for larger fitted values. Figure 2 is related for figure 11 in
Runkel and others (2004), but collapses the two regression lines into a single
line. The largest 5 values show exactly the same pattern between the two
figures,being above the regression line, which helps to understand the -14.06
Bp statistic.

> # setSweave is required for the vignette.

> setSweave("app2_02", 5, 5)

> plot(app2.lr, which=1, set.up=FALSE)

> graphics.off()

−2

−1

 0

 1

 2

 3

 4

 5

 6

R
es

po
ns

e

−3 −2 −1 0 1 2 3 4 5 6
Fitted: Atrazine ~ model(99)

Figure 2. The rating-curve regression model.

9

Figure 3 is a scale-location (S-L) graph that is a useful graph for
assessing heteroscedasticity of the residuals. The horizontal dashed line is the
expected value of the square root of the absolute value of the residuals and the
solid line is the LOWESS smooth. In this case, only 1 of the largest seven
residuals is below the expected value line and most of the other smaller
residuals are below the line, which suggests in increasing variance as the
estimated load increases.

> # setSweave is required for the vignette.

> setSweave("app2_03", 5, 5)

> plot(app2.lr, which=3, set.up=FALSE)

> graphics.off()

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

R
es

id
ua

ls

−3 −2 −1 0 1 2 3 4 5 6
Fitted

Figure 3. The scale-location graph for the regression model.

10

The correlogram in figure 4 is a adaptation of the correlogram from
time-series analysis, which deals with regular samples. The horizontal dashed
line is the zero value and the solid line is a kernel smooth rather than a
LOWESS line. The kernel smooth gives a better fit in this case. The solid line
should be very close to the horizontal line. In this case, there is a suggestion of
a seasonal lack of fit. Note that because the time frame of the calibration
period is only 20 months long, the smoothed line is not very reliable greater
than about 10 months (about 0.8 units on the X-axis).

> # setSweave is required for the vignette.

> setSweave("app2_04", 5, 5)

> plot(app2.lr, which=4, set.up=FALSE)

> graphics.off()

−3

−2

−1

 0

 1

 2

 3

St
an

da
rd

iz
ed

 S
er

ia
l C

or
re

la
tio

n

0.0 0.5 1.0 1.5
Difference in Time, in Years

Figure 4. The correlogram from the regression model.

11

Figure 5 shows the q-normal plot of the residuals. The visual
appearance of figure 5 confirms the results of the PPCC test in the printed
output—the residuals are not normally distributed but are left-skewed.

> # setSweave is required for the vignette.

> setSweave("app2_05", 5, 5)

> plot(app2.lr, which=5, set.up=FALSE)

> graphics.off()

−4

−3

−2

−1

 0

 1

 2

St
an

da
rd

iz
ed

 R
es

id
ua

l

−3 −2 −1 0 1 2 3
Normal Quantiles

Figure 5. The Q-normal plot of the residuals.

12

4 Part 2, Building a Seasonal-wave Load Model

All of the diagnostic plots in the previous section indicated a cause for concern
about the validity of the periodic regression model. Vecchia and others (2008)
describe a seasonal-wave function that often works well for pesticide models.

The USGSwsStats package contains the tools necessary to construct a
seasonal-wave model. Building a good regression model is a multi-step process,
required identifying the timing of the peak concentration and the other
parameters of the seasonal-wave model.

The first step in constructing the seasonal-wave model is the identify
the peak and potential values for the other parameters of the model. That
involves building a regression model without any seasonal terms, and using the
seasonalPeak function on the residuals to construct a first guess on those
parameters. In this case, because there are no censored values, we can use lm

instead of censReg. Note that it does not matter whether we use load or
concentration because the residuals are the same.

> # Create the limited regression model.

> app2.lm <- lm(log(Atrazine) ~ center(log(FLOW)), data = app2.calib)

> app2.sp <- seasonalPeak(dectime(app2.calib$DATES), residuals(app2.lm))

> app2.sp

Unconfirmed seasonal peak:

Default value: 0.421

Alternate values: 0.186 0.425

The next step in constructing the seasonal-wave model is to confirm the
peak. This step requires the confirm function, which is interactive and cannot
be demonstrated in a vignette. In this case, we can accept the default selection
and estimated parameters. The user should step through the interactive
process.

> # Show the plot for this example

> setSweave("app2_06", 5, 5)

> confirm(app2.sp, plot.only=TRUE)

> graphics.off()

> # Confirm the seasonalPeak analysis for a single peak.

> app2.sp <- confirm(app2.sp, all=TRUE)

> app2.sp

Confirmed seasonal peak:

Number of peaks: 1

Time of peak: 0.421

13

●
● ●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●
●

●
●

0.0 0.2 0.4 0.6 0.8 1.0

−2

−1

0

1

2

3

x

y
Select Main Peak

Figure 6. The seasonal peak graph.

The selBestWave function can be used to select the ”best” parameters
for the seasonal-wave model. It requires a column in decimal time format. The
following code adds the column Dectime and executes selBestWave. The
results from selBestWave are simply printed, but could be saved. Even
though the timing of the peak is pretty clear from the graph, we’ll take
advantage of the exhaustive search to find the ”best” peak too.

> # Add Dectime.

> app2.calib <- transform(app2.calib, Dectime=dectime(DATES))

> # Find the best model

> selBestWave(log(Atrazine) ~ center(log(FLOW)), data = app2.calib,

+ "Dectime", app2.sp, exhaustive=TRUE)

Cmax Loading Hlife Test

1 0.4505 2 3 93.64057

2 0.4505 2 4 93.72557

3 0.4385 2 4 93.82006

4 0.4625 2 3 94.08585

5 0.4385 2 3 95.21835

6 0.4145 1 3 95.28731

14

7 0.4625 2 4 95.41145

8 0.4265 2 4 95.43476

The ”best” model has the timing of the peak at about .45 instead of
0.419 (a bit later in the year), a pesticide loading period of 2 months and a
decay rate indicated by a half-life of 3 months (the second slowest decay rate
among the default choices). We are now ready to build and evaluate the
seasonal-wave load model.

> # Create and print the seasonal-wave load model.

> app2.lrsw <- loadReg(Atrazine ~ center(log(FLOW)) +

+ seasonalWave(Dectime, 0.45, 2, 3),

+ data = app2.calib, flow = "FLOW",

+ dates = "DATES", conc.units="ug/L",

+ load.units="pounds",

+ station="St.Joseph River near Newville, Ind.")

> app2.lrsw

*** Load Estimation ***

Station: St.Joseph River near Newville, Ind.

Constituent: Atrazine

Number of Observations: 32

Number of Uncensored Observations: 32

Center of Decimal Time: 1997.034

Center of ln(Q): 6.1625

Period of record: 1996-03-07 to 1997-11-18

Selected Load Model:

Atrazine ~ center(log(FLOW)) + seasonalWave(Dectime, 0.45, 2,

3)

Model coefficients:

Estimate Std. Error z-score

(Intercept) 0.8969 0.1764 5.084

center(log(FLOW)) 1.3854 0.1720 8.055

seasonalWave(Dectime, 0.45, 2, 3) 4.0836 0.5653 7.224

p-value

(Intercept) 0

center(log(FLOW)) 0

seasonalWave(Dectime, 0.45, 2, 3) 0

AMLE Regression Statistics

15

Residual variance: 0.9428

R-squared: 77.65 percent

G-squared: 47.95 on 2 degrees of freedom

P-value: <0.0001

Prob. Plot Corr. Coeff. (PPCC):

r = 0.9806

p-value = 0.2585

Serial Correlation of Residuals: 0.2514

Variance Inflation Factors:

VIF

center(log(FLOW)) 1.027

seasonalWave(Dectime, 0.45, 2, 3) 1.027

Comparison of Observed and Estimated Loads

--

Summary Stats: Loads in pounds/d

Min 25% 50% 75% 90% 95% Max

Est 0.16 0.67 2.41 8.83 20.4 65.5 161

Obs 0.16 0.42 1.14 2.99 89.1 120.0 179

Bias Diagnostics

Bp: -29.86 percent

PLR: 0.7014

E: 0.7309

The Bias Diagnostics indicate a much poorer fit for this model than the
periodic seasonal model originally fit. The seasonal-wave model should be
rejected. The periodic seasonal model could be used, but the load estimates
are poor. A better understanding of why the periodic seasonal model is better
than the seasonal-wave model can be gained by graphing the relation between
flow and concentration (fig. 7).

> # Use colorPlot to show the relation by season

> setSweave("app2_07", 5, 5)

> AA.pl <- with(app2.calib, colorPlot(FLOW, Atrazine, color=Period,

+ yaxis.log=TRUE, xaxis.log=TRUE))

> addExplanation(AA.pl, "ul", title="Period")

> graphics.off()

16

0.01

0.10

1.00

10.00

100.00
At

ra
zi

ne

10 30 100 300 1,000 3,000 10,000
FLOW

Period

 Season Ending Apr
 Season Ending Jul

Figure 7. The relation between atrazine concentration and streamflow by
period.

Figure 7 is related to figure 11 in Runkel and others (2004), but shows
concentration instead of load. Four values stand out as lying outside of their
respective seasons—three in the ”Season Ending Jul” have concentrations less
than about 0.7 and one in the ”Season Ending Apr” has a concentrations
greater than about 0.7. They are shown below. These atypical observations
could contribute to the poor performance of the load models.

> subset(app2.calib, Period=="Season Ending Jul" & Atrazine < .7)

DATES TIMES FLOW Atrazine Period Dectime

3 1996-05-07 815 627 0.180 Season Ending Jul 1996.348

4 1996-06-04 830 428 0.550 Season Ending Jul 1996.425

19 1997-05-14 1230 346 0.664 Season Ending Jul 1997.366

> subset(app2.calib, Period=="Season Ending Apr" & Atrazine > .7)

DATES TIMES FLOW Atrazine Period Dectime

7 1996-08-27 730 250 0.95 Season Ending Apr 1996.654

17

