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1 Introduction

In geostatistics (and also in other applications in science and engineering) we are now performing updates on
Gaussian process models with thousands of components. These large-scale inferences involve computational
challenges, because the updating equations cannot be solved as written, owing to the size and cost of the matrix
operations. They also involve representational challenges, to account for judgements of heterogeneity concerning
the underlying �elds, and diverse sources of observations.

Recently, we presented a diagnostic and visualisation tool for large-scale Gaussian updates, the `medal plot'.
This provides information about both the initial and updated uncertainty around the observations, and the
sharing of observations, for example across a spatial domain. It allows us to `sanity-check' the code implementing
the update, but it can also reveal unexpected features in our modelling.

This vignette presents the R-Software package medalplot, and shows, through a simple example how it can
be used in a simple 1D setting. Although this example uses dense matrices which are of the order of 102 in size,
the package is set up to remain computationally e�cient with huge (106) sparse matrices and a large number
(106) of medals.

2 The example: Medal plots for a 1D Gaussian process

We will use the medal plot to study uncertainty in the case of a simple 1D Gaussian process, a random function
fully de�ned by its expectation (which we take to be zero everywhere) and its covariance function. The function
we will employ is the Matérn function

k1(r) =
σ2

2ν−1Γ(ν)
(κr)νKν(κr), (1)

where σ2 is the marginal variance, κ is the scaling parameter, ν is the smoothness parameter and Kν is the
modi�ed Bessel function of the second kind. This function is implemented as follows:

Matern <- function(r=0:100,nu=3/2,var=1,kappa=0.1) {

r <- kappa * abs(r)

robj <- r^nu * besselK(r, nu = nu) / (2^(nu - 1) * gamma(nu))

robj[is.nan(robj)] <- 1

var * robj

}

Speci�cally we will consider the process X on a 1D grid with 99 cells . Denote the centre of each grid cell as
si and let x = X(s). Then

x ∼ N (0,Σ) (2)
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where Σ is a valid covariance matrix constructed by evaluating the Matérn function with the associated distance
matrix of the grid passed as an argument:

n <- 99

s <- 1:n

V <- Matern(as.matrix(dist(s)), nu = 3/2,var=4, kappa = 0.1)

The precision matrix Q is then the inverse of V:

Q <- chol2inv(chol(V))

We now assume that the process is observed (in noise) at some points sy which, for convenience, coincide with
the centre of the grid boxes. Then y is simply a subset of x corrupted by additional Gaussian noise e :

y = Ax + e (3)

where e = N (0, σ2
vI ) and A identi�es which locations are being observed. The locations and noise parameters

are set as follows:

sy <- c(10,14,18,22,26,30,60,80,85,90)

sigmav <- c(1.6,1.6,1.6,0.8,1.6,1.6,1.5,2.2,2.2,2.2)

Qo <- diag(1/sigmav^2) # Precision matrix

Note that we de�ned prec(e) = Qo. To construct the matrix A, which is an incidence matrix in this example,
we simply set the appropriate elements to one as follows:

ny <- length(sy)

A <- matrix(0,ny,n)

A[cbind(seq(along = sy), sy)] <- 1

Now we have all the elements in place to run the medal plot function. In this example we are going to
generate a medal for each observation location (simply by leaving the subset argument empty). The function
call, following loading of the library, is as follows

library(medalplot)

M <- medalplot(Q=Q,Qo=Qo,A=A)

The function returns, in M, the radii for the three disks, and the associated colours. Note that since we have not
set the subset argument, M has as many rows as there are observations (in this case 10).

print(M)

## r1 r2 r3 col_outer col_inner

## 1 1.6 1.2494 0.9781 #3A3A98FF #FFD700

## 2 1.6 1.2494 0.8033 #3A3A98FF #FFD700

## 3 1.6 1.2494 0.6825 #3A3A98FF #FFD700

## 4 0.8 0.7428 0.6014 #3A3A98FF #FFD700

## 5 1.6 1.2494 0.7201 #3A3A98FF #FFD700

## 6 1.6 1.2494 0.9375 #3A3A98FF #FFD700

## 7 1.5 1.2000 1.1751 #3A3A98FF #FFD700

## 8 2.0 1.4799 1.1945 #832424FF #FFD700

## 9 2.0 1.4799 1.1277 #832424FF #FFD700

## 10 2.0 1.4799 1.2329 #832424FF #FFD700
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3 Plotting the medals

For plotting the medals we will make use of the following libraries:

library(ggplot2)

library(plyr)

library(ellipse)

First, we add some more details to M; these include the horizontal position of the medals M$x, which we will
set to the observation locations sy, the vertical position of the medals M$y, and the standard deviation of e ,
M$sigmav

M$x <- sy

M$y <- 2.7

M$sigmav <- sigmav

We then construct a function which takes the augmented M as an argument and returns a ggplot object de�ning
the medals. This function, given in Appendix A, can be used for any similar problem on a plane.

In addition, to further interpret the medals, we will also plot the posterior variance at each point. For this we
carry out a simple Gaussian update:

Q∗ = ATQoA+Q (4)

implemented as

Qstar <- Qtot <- crossprod(chol(Qo) %*% A) + Q

Sigma <- chol2inv(chol(Qstar))

x_std <- sqrt(diag(Sigma))

where Q∗ is the posterior precision matrix. We now can plot the medals, together with the observations, prior
variance and posterior variance using several (but standard) ggplot functions:

### Prior and posterior uncertainty

X <- data.frame(s=s,std = x_std,prior_std = sqrt(diag(V)))

### Bars for observation uncertainty

Obs_bars <- ddply(M,"s",function(df) {

X <- data.frame(s1 = c(df$x-0.5, df$x-0.5, df$x + 0.5, df$x + 0.5),

y1 = c(0,df$sigmav,df$sigmav,0))

})

### Final plot without medals

g <- ggplot() +

geom_ribbon(data=X,aes(x=s,ymin = 0,ymax = prior_std),

colour="black",fill="#FF525A",alpha=1) +

geom_ribbon(data=X,aes(x=s,ymin = 0,ymax = std),

fill="#FFEB80",colour="black",alpha=1) +

geom_polygon(data=Obs_bars,aes(x=s1,y=y1,group=s),

fill="blue") +

theme(panel.background = element_rect(fill='white',colour="black"),
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Figure 1: Medals showing the relation between the prior, posterior and observation uncertainty and the e�ect
of vicinity of the observations on each other. The blue bars denote the observation uncertainty, the red shading
the prior uncertainty and the yellow shading the posterior uncertainty. For interpretation of the medals see main
text.

legend.position="none",

panel.grid.major = element_line(colour = "light gray", size = 0.05),

text = element_text(size=20)) +

xlab("s") + ylab("") + xlim(0,100) + ylim(0,3.2)

### Add medals to plot

g <- g_medals(g=g,data=M,print_middle=T,alpha=1,scale=c(0.8,0.05),clamp_below=F)

print(g)

4 Interpretation

The medals in Fig. 1 contain a lot of information on the underlying system. First, the outer disk colours of the
medals on the right-hand-side are red since the uncertainty is being constrained by the prior variance and not
the observation variance (since the blue bars are overshooting the red surface). The posterior uncertainty on the
lone observation in the middle is constrained by the observation error. However it does not have any white disk,
since it is not borrowing any information from nearby observations. This is distinct from the observations on the
left hand side, the uncertainty of which is fully constrained by that of the observations. Note how an accurate
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observation in the middle of this group in�uences the posterior uncertainty on those in its vicinity. In particular,
the gold disk is seen to increase in size the further away we get from this central observation. This causes the
white disk to decrease in size, as less information is borrowed at the edges than towards the centre of this group.

Even in such a simple example, the amount of information conveyed by the medals is considerable. It is
envisioned that these medals could be useful in a variety of settings especially in spatially and spatio-temporal
problems.
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A Code for plotting medals

g_medals <- function(data,print_middle=T,alpha=1,scale=0.004,

clamp_below=F,show_rim=F,g=ggplot()) {

.ellipseFun <- function(center=c(0,0),scale=c(1,4),npoints=100) {

df <- data.frame(ellipse(0,scale=scale,npoints=npoints))

df$x <- df$x + center[1]

df$y <- df$y + center[2]

df

}

size_outer <- (data$r1)

size_inner <- (data$r3)

size_middle <- (data$r2)

if (show_rim) {

## Enlarge outer rim

foo <- (size_outer - size_middle) / size_outer

size_outer <- ifelse(foo < 0.1, (1.1 - foo) * size_outer, size_outer)

}

## If medals are too small scale them up

if(clamp_below) {

min_size <- min(diff(range(data$x)),diff(range(data$y)))/900

ind <- which(size_outer < min_size)

scales <- min_size/size_outer

size_outer[ind] <- min_size

size_inner[ind] <- (size_inner*scales)[ind]

size_middle[ind] <- (size_middle*scales)[ind]

}

mobs <- nrow(M)
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## Plot outer medals

for (i in 1:mobs) {

g <- g + geom_polygon(data=.ellipseFun(c(data$x[i],data$y[i]),

size_outer[i]*scale,

npoints=100),

aes(x,y),fill=data$col_outer[i],alpha=alpha)

}

## Plot middle medals

if(print_middle) for (i in 1:mobs) {

g <- g + geom_polygon(data=.ellipseFun(c(data$x[i],data$y[i]),

size_middle[i]*scale,

npoints=100),

aes(x,y),fill="white",alpha=alpha)

}

## Plot inner medals

for (i in 1:mobs) {

g <- g + geom_polygon(data=.ellipseFun(c(data$x[i],data$y[i]),

size_inner[i]*scale,

npoints=100),

aes(x,y),fill=data$col_inner[i])

}

return(g)

}
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