## code to prepare `plausibility-vignette` dataset goes here
# Setup -------------------------------------------------------------------
library(dplyr)
library(purrr)
library(tibble)
library(tidyr)
library(flipr)
ngrid_in <- 10
ngrid_out <- 100
nperms <- 100000
n1 <- 30
n2 <- 30
set.seed(1301)
x1 <- rnorm(n1, mean = 0, sd = 1)
x2 <- rnorm(n2, mean = 3, sd = 1)
y1 <- rnorm(n1, mean = 0, sd = 1)
y2 <- rnorm(n2, mean = 0, sd = 2)
z1 <- rnorm(n1, mean = 0, sd = 1)
z2 <- rnorm(n2, mean = 3, sd = 2)
# Inference on the mean ---------------------------------------------------
null_spec <- function(y, parameters) {
map(y, ~ .x - parameters)
}
stat_functions <- list(stat_t)
stat_assignments <- list(delta = 1)
pf <- PlausibilityFunction$new(
null_spec = null_spec,
stat_functions = stat_functions,
stat_assignments = stat_assignments,
x1, x2,
seed = 1234
)
pf$set_point_estimate(mean(x2) - mean(x1))
pf$set_nperms(10000)
pf$set_parameter_bounds(
point_estimate = pf$point_estimate,
conf_level = pf$max_conf_level
)
pf$set_grid(
parameters = pf$parameters,
npoints = ngrid_in
)
pf$set_nperms(nperms)
pf$set_alternative("two_tail")
pf$evaluate_grid(grid = pf$grid)
df <- rename(pf$grid, two_tail = pvalue)
pf$set_alternative("left_tail")
pf$grid$pvalue <- NULL
pf$evaluate_grid(grid = pf$grid)
df <- bind_rows(
df,
rename(pf$grid, left_tail = pvalue)
)
pf$set_alternative("right_tail")
pf$grid$pvalue <- NULL
pf$evaluate_grid(grid = pf$grid)
df <- bind_rows(
df,
rename(pf$grid, right_tail = pvalue)
)
pf$set_grid(
parameters = pf$parameters,
npoints = ngrid_out
)
df_mean <- tibble(
delta = pf$grid$delta,
two_tail = approx(df$delta, df$two_tail, delta)$y,
left_tail = approx(df$delta, df$left_tail, delta)$y,
right_tail = approx(df$delta, df$right_tail, delta)$y,
) %>%
pivot_longer(-delta)
saveRDS(df_mean, "inst/vignette-data/plausibility-df-mean.rds")
# Inference on the standard deviation -------------------------------------
null_spec <- function(y, parameters) {
map(y, ~ .x / parameters)
}
stat_functions <- list(stat_f)
stat_assignments <- list(rho = 1)
pf <- PlausibilityFunction$new(
null_spec = null_spec,
stat_functions = stat_functions,
stat_assignments = stat_assignments,
y1, y2,
seed = 1234
)
pf$set_point_estimate(sd(y2) / sd(y1))
pf$set_nperms(10000)
pf$set_parameter_bounds(
point_estimate = pf$point_estimate,
conf_level = pf$max_conf_level
)
pf$set_grid(
parameters = pf$parameters,
npoints = ngrid_in
)
pf$set_nperms(nperms)
pf$set_alternative("two_tail")
pf$evaluate_grid(grid = pf$grid)
df <- rename(pf$grid, two_tail = pvalue)
pf$set_alternative("left_tail")
pf$grid$pvalue <- NULL
pf$evaluate_grid(grid = pf$grid)
df <- bind_rows(
df,
rename(pf$grid, left_tail = pvalue)
)
pf$set_alternative("right_tail")
pf$grid$pvalue <- NULL
pf$evaluate_grid(grid = pf$grid)
df <- bind_rows(
df,
rename(pf$grid, right_tail = pvalue)
)
pf$set_grid(
parameters = pf$parameters,
npoints = ngrid_out
)
df_sd <- tibble(
rho = pf$grid$rho,
two_tail = approx(df$rho, df$two_tail, rho)$y,
left_tail = approx(df$rho, df$left_tail, rho)$y,
right_tail = approx(df$rho, df$right_tail, rho)$y,
) %>%
pivot_longer(-rho)
saveRDS(df_sd, "inst/vignette-data/plausibility-df-sd.rds")
# Inference on both the mean and the standard deviation -------------------
null_spec <- function(y, parameters) {
map(y, ~ (.x - parameters[1]) / exp(parameters[2]))
}
stat_functions <- list(stat_t, stat_f)
stat_assignments <- list(delta = 1, log_rho = 2)
pf <- PlausibilityFunction$new(
null_spec = null_spec,
stat_functions = stat_functions,
stat_assignments = stat_assignments,
z1, z2,
seed = 1234
)
pf$set_point_estimate(c(
mean(z2) - sd(z2) / sd(z1) * mean(z1),
log(sd(z2) / sd(z1))
))
pf$set_nperms(10000)
pf$set_parameter_bounds(
point_estimate = pf$point_estimate,
conf_level = pf$max_conf_level
)
pf$set_nperms(nperms)
# Fisher combining function
pf$set_aggregator("fisher")
pf$set_grid(
parameters = pf$parameters,
npoints = ngrid_in
)
pf$evaluate_grid(grid = pf$grid)
grid_in <- pf$grid
pf$set_grid(
parameters = pf$parameters,
npoints = ngrid_out
)
if (requireNamespace("interp", quietly = TRUE)) {
Zout <- interp::interp(
x = grid_in$delta,
y = grid_in$log_rho,
z = grid_in$pvalue,
xo = sort(unique(pf$grid$delta)),
yo = sort(unique(pf$grid$log_rho))
)
pf$grid$pvalue <- as.numeric(Zout$z)
} else
pf$grid$pvalue <- rep(NA, nrow(pf$grid))
df_fisher <- pf$grid
saveRDS(df_fisher, "inst/vignette-data/plausibility-df-fisher.rds")
# Tippett combining function
pf$set_aggregator("tippett")
pf$set_grid(
parameters = pf$parameters,
npoints = ngrid_in
)
pf$evaluate_grid(grid = pf$grid)
grid_in <- pf$grid
pf$set_grid(
parameters = pf$parameters,
npoints = ngrid_out
)
if (requireNamespace("interp", quietly = TRUE)) {
Zout <- interp::interp(
x = grid_in$delta,
y = grid_in$log_rho,
z = grid_in$pvalue,
xo = sort(unique(pf$grid$delta)),
yo = sort(unique(pf$grid$log_rho))
)
pf$grid$pvalue <- as.numeric(Zout$z)
} else
pf$grid$pvalue <- rep(NA, nrow(pf$grid))
df_tippett <- pf$grid
saveRDS(df_tippett, "inst/vignette-data/plausibility-df-tippett.rds")
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.