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1 Graph data

First install and then attach the package.

library(sirgraph)

A graph object suitable for sirgraph is an igraph object with some extra
attributes on the graph and the nodes. A sample can be created with the
makedata function.

g = makedata()

g

## IGRAPH U--- 34 78 -- Zachary

## + attr: name (g/c), start (g/n), time (g/n), vaccinated (v/l), sex

## (v/c), age (v/n), state (v/c)

The easiest way to get the node attributes is via the get.data.frame func-
tion.

head(get.data.frame(g, "vert"))

## vaccinated sex age state

## 1 FALSE M 19 S

## 2 TRUE F 19 S

## 3 FALSE F 19 S

## 4 FALSE M 19 S

## 5 FALSE M 19 S

## 6 TRUE F 21 S

As well as extra node attributes, the graph itself has some extra attributes.

g$time

## [1] "2014-01-01"
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g$start

## [1] "2014-01-01"

g$stepsize

## NULL

2 Plotting

First we’ll set some infected and recovered nodes on the graph.

V(g)$state[1:3] = "I"

V(g)$state[4:6] = "R"

a simple plotting function can then be used:

plotSIR(g)
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To use the ggplot2 graphics functions we first have to assign coordinates to
the graph using the glayout function:

g = glayout(g)

By default this uses the Kamada-kawai layout, but any of the layout func-
tions from igraph can be used.

Now we can plot it:

gplotgraph(g)
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This function uses the lower-level geom functions to plot state and vaccina-
tion status. You can use these lower-level functions to build other plots, for
example to plot the network coloured by age and shaped by sex:

ggplot() + geom_edge(aes(x = x, y = y), col = "grey", data = g) + geom_node(aes(x = x,

y = y, col = age, shape = sex), size = 5, data = g)
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Full control of the plot is then available using the ggplot2 functions, for
example to change the colour scheme or shapes.

3 Discrete-Time and Continuous-Time Infection
Modelling

Running an SIR model on a graph network requires the following:

• A graph

• An initial state of each node (S, I, or R).

• A method for the spread of infection (S to I).

• A method for the removal of infection (I to R).

• A way of deciding when to stop the simulation
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3.1 Starter Functions

A “starter” function is one which sets the initial infection state of a graph.
Possible starter functions could be to set a fixed number of nodes as infectious,
or to set infectious status with a fixed probability, or to set infectious status
according to attributes of the nodes. A starter function always takes a graph
as parameter, and returns the graph with a modified state attribute.

The infectN function is a starter function generator, in that it returns
starter functions from a family of functions based on N, the number of initial
infectious nodes. So infectN(1) is a starter function that infects one node,
infectN(5) is a starter function that infects five nodes.

g = makedata()

g = glayout(g)

g = infectN(1)(g)

par(mfrow = c(1, 2))

par(mar = c(0, 0, 0, 0))

plotSIR(g)

g = infectN(5)(g)

plotSIR(g)
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Exercise: write a starter function generator, infectP, perhaps, that starts
the infection with each node having a probability, p of being infected.

3.2 Spreader Functions

A “spreader” function is responsible for stepping the infection along. For a
discrete-time model the steps will all advance the graph time by the same in-
terval, but for a continuous-time model each step may advance the graph state
by a different interval.

Currently a spreader function has the job of both infecting new nodes and
removing infected nodes (but this may be separating at some point).
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As with a starter function, it takes an SIR graph as input and returns the
updated graph. Function generators are again useful for creating spreader func-
tions from parameterised families. We illustrate that now.

The spreadP2 spreader function generator produces spreader functions based
on two probabilities. The probability of a susceptible node being infected by
an infectious node is pSI in any unit time step, and the probability of an in-
fected node recovering is pIR in any unit time step. Hence a spreader function
that gives each infectious possibility and recovery possibility an even chance is
created thus:

sEvens = spreadP2(pSI = 0.5, pIR = 0.5)

sEvens

## SIR spread function

## Fixed spread probabilities, pSI=0.5 pIR=0.5

We can now run this spreader a few times and see the change.

par(mfrow = c(2, 2))

par(mar = c(0, 0, 0, 0))

plotSIR(g)

g = sEvens(g)

plotSIR(g)

g = sEvens(g)

plotSIR(g)

g = sEvens(g)

plotSIR(g)
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Now we repeat, but with a lower recovery probability and a higher infectious
probability:

sMore = spreadP2(pSI = 0.8, pIR = 0.1)

sMore

## SIR spread function

## Fixed spread probabilities, pSI=0.8 pIR=0.1

g = infectN(5)(g)

par(mfrow = c(2, 2))

par(mar = c(0, 0, 0, 0))

plotSIR(g)

g = sMore(g)

plotSIR(g)

g = sMore(g)

plotSIR(g)

g = sMore(g)

plotSIR(g)
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g$time

## [1] "2014-01-04"

Notice how the current time has changed.
The spreadP2 function is a special case of a more general spreader process

where the probabilities are a function of time and the attributes of the poten-
tially infected person. This is handled by the spreadF function. By writing any
function of time and vertex attributes, it is possible to simulate other processes
in this class. These functions must be vectorised over the vertices so that when
called with a number of vertices they return the same number of probabilities.

For example, this function returns 0.9 on any day apart from Sunday, when
it returns 0.5 – it is independent of the vertex attributes:

restDay <- function(t, v) {
nv = length(v)

if (wday(t) == 1) {
return(rep(0.5, nv))

} else {
return(rep(0.9, nv))

}
}
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restDay("2014-04-06", 0)

## [1] 0.5

restDay("2014-04-07", 0)

## [1] 0.9

Further, this function returns 0.9 if the vertex is an unvaccinated vertex, and
0.2 if it is vaccinated. This function ignores the time, and note it is vectorised
over the vertices by using the ifelse function:

isVaccinated <- function(t, v) {
ifelse(v$vaccinated, 0.2, 0.9)

}
# see the first few

isVaccinated("2014-01-01", V(g))[1:8]

## [1] 0.9 0.2 0.9 0.9 0.9 0.2 0.2 0.9

Now we can use either of these to build a spreader function using spreadF,
along with a constant function for the recovery probability. We’ll use a tree
network to see how vaccinated nodes isolate branches of the tree.

fConst = function(t, v) {
rep(0.3, length(v))

}
spreadVaccine = spreadF(isVaccinated, fConst)

spreadVaccine

## SIR spread function

## Spread probabilities as functions

3.3 Stopper Functions

A “stopper” function takes an SIR graph and returns TRUE if it decides you
should stop running a simulation. Possible stopper functions include stopping
after a given time, or stopping if there are no infectious cases. Those two stopper
functions are currently implemented.

Stopper functions aren’t much use on their own, but are designed to be
passed into the main looping function stepSim.

4 Running Simulations

The main simulation looping function, stepSim takes a graph, a a spreader
function, and a stopper function, and runs the spreader until the stopper indi-
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cates it has finished. The graph is returned in its final state with infection and
removal times as node attributes.

The default start time in makedata is 2014-01-01, so here we’ll run for 12
days:

g = makedata()

g = glayout(g)

g = infectN(1)(g)

g = stepSim(g, sMore, stopAfter("2014-01-12"))

g$time

## [1] "2014-01-12"

gplotgraph(g)
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The infection is clearly still going at that point. Now we’ll start again and
let it run until it has finished and there are no infectious nodes.
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g = makedata()

g = glayout(g)

g = infectN(1)(g)

g = stepSim(g, sMore, stopWhenClear)

g$time

## [1] "2014-02-09"

gplotgraph(g)
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The timing of the state changes can be obtained by getting the vertex data
frame. Note that dates aren’t kept as dates and so need converting from the
number of days from the start of 1970. Then we can, for example, plot a
histogram of the infection times, broken down by vaccination status (which in
this case is irrelevant):
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d = get.data.frame(g, "vertices")

d$tI = as.Date(d$tI, "1970-01-01")

d$tR = as.Date(d$tR, "1970-01-01")

head(d)

## vaccinated sex age state x y tI tR

## 1 FALSE M 19 R 3.965 -0.4153 2014-01-03 2014-01-08

## 2 TRUE F 19 R 3.865 -0.0386 2014-01-04 2014-01-12

## 3 FALSE F 19 R 3.602 0.7354 2014-01-04 2014-01-06

## 4 FALSE M 19 R 3.195 -0.1572 2014-01-04 2014-01-10

## 5 FALSE M 19 R 4.526 -1.4961 2014-01-04 2014-01-12

## 6 TRUE F 21 R 3.108 -1.3501 2014-01-04 2014-01-13

ggplot(d, aes(x = tI, fill = vaccinated)) + geom_histogram()

## stat bin: binwidth defaulted to range/30. Use ’binwidth = x’ to

adjust this.

## Warning: position stack requires constant width: output may be

incorrect
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We now try running the simulation using the vaccine-dependent infection
model defined as spreadVaccine previously. We’ll use a tree structure for our
network to show the effect of vaccinated nodes protecting branches.

gF = infectN(2)(glayout(makedata(g = graph.tree(150, children = 4))))

gF = stepSim(gF, spreadVaccine, stopWhenClear)

gplotgraph(gF)
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4.1 Continuous Spread Functions

In reality, SIR events happen in continuous time. At each event, the graph
changes and the infection possibilities change. When time is discretised and
events occur within a timestep according to a probability then this behaviour is
lost. For example, an infection occurring early in the morning could be spread
to all those contacts during that day. A daily time step function would not be
able to infect from that case until the next day.

The simplest continuous time spread model is probably to assign a rate to
infection and recovery events, then to sample from the rate distribution and find
the next occurring event as the minimum of those sampled times. The graph
is then advanced to a new state and time, and the other sample times thrown
away since the state of the graph has changed. This is then repeated.

The function cspreadR is a spreader function generator that implements
this, given an infection rate and a recovery rate.
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## create a graph with two infections

gDiscrete = infectN(2)(glayout(makedata()))

## now add recovery times to the infected cases

gContinuous = addRecovery(gDiscrete, 0.1)

## a discrete probability and a continuous rate spread function

discSpread = spreadP2(0.1, 0.1)

contSpread = cspreadR(0.1, 0.1)

## run them both

gDiscrete = stepSim(gDiscrete, discSpread, stopWhenClear)

gContinuous = stepSim(gContinuous, contSpread, stopWhenClear)

## compare the epidemic outcome

table(V(gDiscrete)$state)

##

## R S

## 20 14

table(V(gContinuous)$state)

##

## R S

## 30 4

## show discrete/continuous recovery times

options(digits = 8)

V(gDiscrete)$tR[1:5]

## [1] 16083 16091 16087 16085 NA

V(gContinuous)$tR[1:5]

## [1] 16086.825 16075.190 16105.901 16088.632 16089.986

5 Plotting in Time

The resulting epidemic progress can be plotted:

timePlot(g, s = 1)
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Or you can use the animation package to produce a web page:

saveHTML(

{

print(gplotgraph(g));

g = stepSim(g,

sMore,

stopWhenClear,

after=function(g){

print(gplotgraph(g))

})

},

outdir="./spread/"

)

Note how the graph must be printed at the start and via the after function
in the stepping loop. This makes sure we see the initial state of the network
and the final state.

6 Design

This code has been written with a fairly strong functional program methodology,
hence the sprinkling of function generators here and there. The design of the
stepSim function has been influenced by the idea of dependency injection, so
that the function code represents the minimal amount of code needed for any
generic simulation, and specific behaviour is passed in via spreader and stopper
functions.

This design also means that spreader and stopper functions can be easily
run and hence tested outside any looping code.
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7 To-do

Some ideas:

• make lots of things into classes so the print nicely

• separate the infectious and removal aspects of the spreader function
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