
Basic SIR fitting - Details

June 20, 2017

This vignette provides technical details of the fitsir package.

Contents

1 Starting function 2
1.1 Prevalence . 2
1.2 Death . 6
1.3 Incidence . 8

2 Sensitivity equations 11

3 Confidence intervals 12
3.1 delta - Delta method . 12
3.2 mvrnorm - Multivariate normal approximation 13
3.3 wmvrnorm - Weighted multivariate normal approximation 13

1

1 Starting function

To avoid falling into local minima, it is important to use a good starting parame-
ter. fitsir provides a function (startfun) that estimates a reasonable starting
parameter using a built-in algorithm. This section describes the method used
in findiing starting parameters.

1.1 Prevalence

First, let’s start with the simplest case. Although it is practically impossible to
obtain a prevalence data, prevalence trajectory of an SIR model has important
properties that allow us to estimate the parameter based on the trajectory only.

Let’s take a look at the 1918 Philadelphia Flu data as an example (we’re
assuming that the data represents prevalence). We start by fitting a spline to
the data to obtain a continuous trajectory.

library(fitsir)

times <- seq_along(phila1918$date)

count <- phila1918$pim

ss <- fitsir:::smooth.spline2(times, count, itmax = 100, relpeakcrit = 0.1)

Then, we estimate the little r (β−γ) by finding an appropriate fitting window
using spline fit and fitting a linear model to the real data. Hereafter, we denote
this quantity as a0 instead of r.

ss.data <- data.frame(times = times, count = exp(predict(ss)$y))

ss.tmax <- ss.data$times[which.max(ss.data$count)]

ss.t1 <- min(times)+0.25*(ss.tmax-min(times))

ss.t2 <- min(times)+0.75*(ss.tmax-min(times))

m <- lm(log(count)~times,data=subset(ss.data,times<=ss.t2 & times>=ss.t1))

(r <- unname(coef(m)[2])) ##beta - gamma

[1] 0.2005722

2

0 20 40 60 80 100 120

1
5

10
50

50
0

times

co
un

t

Notice that this data has trails in the beginning of the epidemic and does
not follow a typical SIR shape. So taking the initial value from the data or from
the spline will not correctly estimate the initial size of the epidemic. To avoid
this issue, we predict the initial value, I(0), by extrapolating the linear fit. We
denote this quantity as b0 hereafter.

(iniI <- unname(exp(predict(m, data.frame(times=times[1])))))

[1] 0.3304682

Then, we look at the second derivative at the peak:

d2 log I/dt2 = −βS′/N = β(−βSI/N)/N = −β2/N2(γN/β)I = −βγI/N,

Rearranging, we get

c0 = −d2 log I/dt2/Ipeak = βγ/N

We can obtain this quanity by using the spline fit.

3

Qp.alt <- predict(ss,ss.tmax,deriv=2)$y ## second derivative

Ip <- exp(max(predict(ss)$y)) ## I_peak

(c <- -Qp.alt/Ip)

[1] 4.360793e-05

Finally, we can obtain the fourth equation as follows:

dI/dt = βSI/N − γI
= β(N − I −R)I/N − γI

= β

(
N − I −

∫ t

0

γI(s)ds

)
I/N − γI

0 = (β − γ)Ipeak −
β

N
I2peak −

βγ

N
Ipeak

∫ tpeak

0

I(s)ds

For convenience, we denote d0 =
∫ tpeak

0
I(s)ds. Here, the integral is calculated

numerically:

t.diff <- diff(times)

t.diff <- c(t.diff[1], t.diff)

ss.int <- transform(ss.data, int = count * t.diff)

ss.int <- ss.int[times<ss.tmax,]

d0 <- sum(ss.int[,3])

Altogether, we have the following system of non-linear equations:

a0 = β − γ
b0 = Ni0

c0 = βγ/N

d0 = a0/c0 − Ipeak/γ

Rearranging the four equations provided, we get

γ = c0Ipeak/(a0 − c0d0)

β = γ + a0

N = βγ/c0

i0 = b0/N

Clearly, a0 − c0d0 must be positive in order to get a biologically meaningful
parameter (γ > 0). If the data is noisy, we may get a negative quantity due to
an inaccurate estimation of the second derivative. So we adjust d0 to avoid this
value from becoming negative:

4

while(r - c * d0 < 0){
ss.int <- ss.int[-nrow(ss.int),]

d0 <- sum(ss.int[,3])

}

Therefore, we get

prev.pars <- list()

(prev.pars <- within(prev.pars,{
gamma <- c * Ip/(r - c * d0)

beta <- gamma + r

N <- beta*gamma/c

i0 <- iniI/N

}))

$i0

[1] 1.753605e-07

##

$N

[1] 1884507

##

$beta

[1] 9.166129

##

$gamma

[1] 8.965557

plot(times, count, log="y")

lines(times, SIR.detsim(times, unlist(prev.pars)[c(3, 4, 2, 1)]), col="red")

5

0 20 40 60 80 100 120

1
5

10
50

50
0

times

co
un

t

1.2 Death

Estimating a starting parameter from a death cases curve is very similar to what
we did so far. Note that death cases are counted by using R(ti + δt) − R(ti).
Approximately, we have

R(ti + ∆t)−R(ti)

∆t
≈ dR

dt
= γI

So the estimation of the starting parameter is based on the transformed data
rather than the raw data:

t.diff <- diff(times)

t.diff <- c(t.diff[1], t.diff)

count.orig <- count

count <- count/t.diff

6

Note that we have to fit a spline to a transformed data instead. However,
since ∆t = 1 for this data, we ignore this step.

As this transformed data is just a multiple of the prevalence trajectory, b0
and d0 of the transformed data will just be a multiple of those of the prevalence
data:

a0 = β − γ
b0 = γNi0

c0 = βγ/N

d0 = γa0/c0 − Ipeak
Notice that c0 stays the same as before because the it’s the ratio between the
second derivative at the peak and the peak value itself. Rearranging, we get

γ = c0(d0 + Ipeak)/a0

β = γ + a0

N = βγ/c0

i0 = b0/(γN)

death.pars <- list()

(death.pars <- within(prev.pars,{
gamma <- c*(d0 + Ip)/r

beta <- gamma + r

N <- beta*gamma/c

i0 <- iniI/(gamma*N)

}))

$i0

[1] 8.224505e-06

##

$N

[1] 35175.73

##

$beta

[1] 1.342863

##

$gamma

[1] 1.142291

plot(times, count, log="y")

lines(times, SIR.detsim(times, unlist(death.pars)[c(3, 4, 2, 1)], type="death"), col="red")

7

0 20 40 60 80 100 120

1
5

10
50

50
0

times

co
un

t

1.3 Incidence

Incidence is calculated by S(ti)− S(ti + δt). Approximately, we have

S(ti)−R(ti + ∆t)

∆t
≈ −dS

dt
= βSI/N

Once again, we use the transformed data here. We still have a0 = β − γ
but the initial value, b0, is equal to βS(0)I(0)/N in this case. As S(0) ≈ N ,
we write b0 = βNi0. Finally, c0 is obtained by taking the second derivative of
βSI at the peak. Here we take the second derivative of log(βSI) instead for

8

convenience:
d log(βSI)

dt
=

β

N
(S − I)− γ

d2 log(βSI)

dt2
=

β

N

(
−2

βSI

N
+ γI

)
=

β

N

(
−2Ipeak + γ

N

βS
Ipeak

)
c0 =

β

N

(
2− γ N

βS

)
To allow for simple computation, we assume that S ≈ N near the peak. This
is not accurate but this assumption makes the algorithm a lot simpler:

c0 =
β

N

(
2− γ

β

)
=
β + a0
N

Finally, we obtain the following set of equations:

a0 = β − γ
b0 = βNi0

c0 = (β + a0)/N

To obtain the last equation, we use the final size equation (CITE Miller
2012):

S(∞)/N = exp

[
−β
γ

[1− S(∞)/N]

]
Given an incidence curve, final size can be estimated numerically. We esti-

mate the initial increasing and later decreasing incidence counts by linear fits
and in between by a spline:

ss.t3 <- floor(ss.tmax+0.25*ss.tmax)

ss.t4 <- ceiling(ss.tmax+0.75*ss.tmax)

m2 <- lm(log(count)~times,data=subset(ss.data,times<=ss.t4 & times>=ss.t3))

times.predict1 <- seq(min(times), ss.t2, by = t.diff[length(t.diff)])

times.predict2 <- seq(ceiling(ss.t3), 3*ss.tmax, by = t.diff[length(t.diff)])

count.predict1 <- exp(predict(m, data.frame(times = times.predict1)))

count.predict2 <- exp(predict(m2, data.frame(times = times.predict2)))

finalsize <- sum(count.predict1) + sum(count.orig[times > ss.t2 & times <= ss.t3]) + sum(count.predict2)

Using R(∞) = N − S(∞), we get

R(∞)/N = 1− exp

[
−β
γ
R(∞)/N

]

9

Then, we can write

f(β) =
R(∞)

N
−
(

1− exp

(
− β

β − r
R(∞)

N

))
,

The root of this function will give us the estimate of β. However, this may
not always have a root if the data is noisy and estimate of c and/or r are not
accurate. So we use the following method:

sizefun <- function(beta) {
R0 <- beta/(beta-r)

N <- (beta + r)/c

(finalsize/N - (1 - exp(-R0 * finalsize/N)))^2

}
betavec <- seq(1.1 * r, 50*r, r/10)

sizevec <- sizefun(betavec)

if (all(diff(sizevec) < 0)) {
beta <- betavec[head(which(sizevec < 1e-4), 1)]

} else {
beta <- betavec[which.min(sizevec)]

}

Then, we get

inc.pars <- list()

(inc.pars <- within(prev.pars,{
beta <- beta

gamma <- beta - r

N <- (beta + r)/c

i0 <- iniI/beta/N

}))

$i0

[1] 1.678504e-07

##

$N

[1] 214793.5

##

$beta

[1] 9.166129

##

$gamma

[1] 8.965557

plot(times, count, log="y")

lines(times, SIR.detsim(times, unlist(inc.pars)[c(3, 4, 2, 1)], type="incidence"), col="red")

10

0 20 40 60 80 100 120

1
5

10
50

50
0

times

co
un

t

2 Sensitivity equations

Let xi(t, θ) be the states of the SIR model and θj,u and θj,c be unconstrained
and constrained parameters of the model. In order to employ gradient-based
optimization algorithms (e.g. BFGS), we must solve for dxi(t, θ)/dθj,u. To find
the sensitivity equations, fitsir integrates the following set of differential equa-
tions along with the basic SIR model:

d

dt

dxi(t; θ)

dθj,u
=

(
d

dt

dxi(t; θ)

dθj,c

)
dθj,c
dθj,u

=

(
∂fx
∂θj,c

+
∑
i

∂fx
∂xi

dxi(t; θ)

dθj,c

)
dθj,c
dθj,u

,

where fx = dx/dt. Essentially, we integrate sensitivity equations with respect
to constrained parameters for simplicity but multiply dθj,c/dθj,u after to obtain

11

sensitiviy equations with respect to unconstrained parameters because optimiza-
tion is done using unconstrained parameters.

For clarity, we write νxi,θj to represent sensitivity equations with respect to
constrained parameters. Then, we write

νx,θ(t;x; θ) =

[
νS,β νS,N νS,γ νS,i0
νI,β νI,N νI,γ νI,i0

]
.

So the sensitivity equations of the SIR model are given by

d

dt
νx,θ(t; ·) =

[
−βI/N −βS/N
βI/N βS/N − γ

]
νx,θ(t; ·) +

[
−SI/N βSI/N2 0 0
SI/N −βSI/N2 −I 0

]
.

The following additional equations complete the sensitivity equations:

νx,θ(0;x(0); θ) =

[
0 1− i0 0 −N
0 i0 0 N

]
[
dθj,c
dθj,u

]
j=1,2,3,4

=
[
β γ N (1− i0)i0

]
.

Using the sensitivity equations of the SIR model, we can now compute the
sensitivity equations of negative log-likelihood functions with respect to the
unconstrained parameters by applying the chain rule. Given a log likelihood
function l(X;µ; θ), we have:

dl(X;µ; θ)

dθj,u
=

dl

dµ

dµ

dθj,u
,

where X is the observed counts and µ is the expected trajectory. Precisely, µ is
equal to I for prevalence fits, S(τn)− S(τn+1) for incidence fits, and R(τn+1)−
R(τn) for death fits.

3 Confidence intervals

fitsir provides three ways of estimating a cofidence interval around an esti-
mated trajectory.

3.1 delta - Delta method

Delta method relies on the sensitivity equation. Borrowing the notation from
the previous section, we write partial derivatives of an expected number of
observations at time t with respect to unconstrained parameters as

dµ

dθj,u

We look at the partial derivative with respect to unconstrained parameters
because fitting is done on the unconstrained scale and mle2 returns a variance-
covariance matrix of the unconstrained parameters.

12

Thus, we write

νµ,θu =
[
νµ,βu νµ,Nu νµ,γu νµ,iou

.
]

Then, we find that
Var(µ) = νµ,θu · Cov(θu) · νTµ,θu .

Taking the square root, we obtain the standard error of the estimated trajectory
at each time step. Finally, confidence interval is calculated using the standard
error by assuming normality.

3.2 mvrnorm - Multivariate normal approximation

It is assumed that the parameters are normally distributed. We take random
samples of parameters based on this assumption using the variance-covariance
matrix provided by mle2. For each sample, expected trajectory is calculated.
Then, confidence interval at each time step is found by taking the appropriate
quantile.

3.3 wmvrnorm - Weighted multivariate normal approxima-
tion

Like wmvrnorm, we start by taking random samples of parameters based on nor-
mal approximation. However, instead of taking the quantiles from the estimated
trajectories, we take a weighted quantile instead with each trajectories weighted
by likelihood of a trajectory divided by probability of the parameter sample that
generated the trajectory.

The reason why we do this is based on the Metropolis-Hastings rule: a
Markov chain over values of the parameter vecotr xi will converge to the correct
distribution if for any t

P (jumpxt → xt+1)P (acceptxt+1|xt)
P (jumpxt+1 → xt)P (acceptxt|xt+1)

=
Post(xt+1)

Post(xt)
=
L(xt+1)Prior(xt+1)

L(xt)Prior(xt)
.

When we are taking random samples from a multivariate normal distribution,
the probability of sampling xt+1 is independent of xt. Furthermore, we’re as-
suming that the prior probabilities are all equal. Therefore, we get

P (samplext+1)P (acceptxt+1)

P (samplext)P (acceptxt)
=
L(xt+1)

L(xt)
.

Therefore, letting

P (acceptxt+1) =
L(xt+1)

P (samplext+1

satisfies the criterion.

13

	Starting function
	Prevalence
	Death
	Incidence

	Sensitivity equations
	Confidence intervals
	delta - Delta method
	mvrnorm - Multivariate normal approximation
	wmvrnorm - Weighted multivariate normal approximation

