library(sits)
library(odcsits)
#
# General definitions
#
classification_memsize <- 6
classification_multicores <- 8
#
# Connect to ODC Metadata Database
#
index <- odc_index(
dbname = "my-odc-database",
host = "my-odc-host",
port = 5432,
user = "my-odc-user",
password = "my-odc-passowrd"
)
#
# Load Sample file
#
sample_file <- "https://brazildatacube.dpi.inpe.br/public/bdc-article/training-samples/training-samples.csv"
#
# Search ODC Products
#
odc_products(index)
#
# Search ODC Datasets
#
datasets <- odc_search(
index = index,
product = "CB4_64_16D_STK_1",
start_date = "2018-09-01",
end_date = "2019-08-01"
)
#
# Generate the ODC data cube
#
cube <- odc_cube("CBERS-4", "AWFI", datasets)
# SITS Usage!
#
# Extract time series
#
samples <- sits_get_data(cube,
file = sample_file,
multicores = classification_multicores)
#
# Train model
#
rfor <- sits_train(
samples, ml_method = sits_rfor(
num_trees = 1000
)
)
#
# Classify using the data cubes
#
probs <- sits_classify(
data = cube,
ml_model = rfor,
memsize = classification_memsize,
multicores = classification_multicores
)
#
# Post-processing
#
probs_smoothed <- sits_smooth(probs, type = "bayes")
labels <- sits_label_classification(probs_smoothed)
#
# Saving results
#
# Labels
saveRDS(
labels, file = "labels.rds"
)
# Probs
saveRDS(
probs, file = "probs_cube.rds"
)
# Smoothed probs
saveRDS(
probs_smoothed, file = "probs_smoothed_cube.rds"
)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.