
Brightbox: a short introduction
Benjamin Rollert and Ronny Li

2017-06-28

Brightbox contains functions that tackle the problem of inspecting internals for any blackbox supervised
learner. The package is designed to work with the caret package as well as any model that is an ensemble of
caret learners. As of writing, the approaches implemented in the package are partial dependency plots
(run_partial_dependency) and marginal variable importance (calculate_marginal_vimp).

Installation

> devtools::install_github('breather/brightbox')

Partial Dependency Plots

Introduction

Partial dependency plots are a technique for visualizing the effect of a single feature on the response,
marginalizing over the values of all other features. They are the visual equivalent of a coefficient in linear
regression (and in fact, the partial dependency plot for a coefficient in a linear model will be a straight line).
Example of partial dependency plots for a linear model
library(data.table)
dt <- data.table(a = 1:3, b = 2:4, c = c(8, 11, 14))
lm1 <- lm(c ~ a + b - 1, dt)
lm1$coefficients
#> a b
#> -2 5

Note that the slopes of the plotted lines match the coefficients
library(brightbox)
pd <- run_partial_dependency(feature_dt = dt[, c("a", "b")],

model_list = list(linear_model = lm1))

a b

1.0 1.5 2.0 2.5 3.0 2.0 2.5 3.0 3.5 4.0

6

8

10

12

14

16

9

10

11

12

13

Value Cutpoint

P
ar

tia
l D

ep
en

de
nc

e

model

ensemble

linear_model

1

http://topepo.github.io/caret/index.html

The advantage of partial dependency plots shine when there is a non-linear relationship between the feature in
question and the response. In such cases, a linear model will hide the true relationship due to its underlying
assumptions. Ideally we would like to use a more flexible model with fewer assumptions but maintain
interpretability.

The next section will work through an example dataset to demonstrate brightbox’s features with respect to
partial dependency plots.

Walkthrough

First, load the data
library(data.table)
library(mlbench)
data(BostonHousing, package = "mlbench")
head(BostonHousing)
#> crim zn indus chas nox rm age dis rad tax ptratio b
#> 1 0.00632 18 2.31 0 0.538 6.575 65.2 4.0900 1 296 15.3 396.90
#> 2 0.02731 0 7.07 0 0.469 6.421 78.9 4.9671 2 242 17.8 396.90
#> 3 0.02729 0 7.07 0 0.469 7.185 61.1 4.9671 2 242 17.8 392.83
#> 4 0.03237 0 2.18 0 0.458 6.998 45.8 6.0622 3 222 18.7 394.63
#> 5 0.06905 0 2.18 0 0.458 7.147 54.2 6.0622 3 222 18.7 396.90
#> 6 0.02985 0 2.18 0 0.458 6.430 58.7 6.0622 3 222 18.7 394.12
#> lstat medv
#> 1 4.98 24.0
#> 2 9.14 21.6
#> 3 4.03 34.7
#> 4 2.94 33.4
#> 5 5.33 36.2
#> 6 5.21 28.7

Split into features and response
boston_dt <- data.table(BostonHousing)
x <- boston_dt[, -"medv", with = FALSE]
y <- boston_dt$medv
Prep the data (numeric columns are friendlier)
x[, chas := as.numeric(chas)]

The dataset BostonHousing contains housing data for 506 census tracts of Boston from the 1970 census.
medv is the response variable representing the median value of houses in each census tract (in USD 1000’s).
See ??BostonHousing for additional details.

We will train two blackbox learners on this data and see if we can interpret the patterns each model learned.
library(caret)
Train an xgboost model
xgb <- train(x = x, y = y,

method = "xgbTree", metric = "RMSE")
Train a single-layer neural net
nn <- train(x = x, y = y,

method = "nnet", metric = "RMSE",
preProc = c("center", "scale"),
tuneGrid = expand.grid(size = c(10, 15, 20), decay = c(0, 5e-4, 0.05)),
linout = TRUE,
trace = FALSE)

2

From the two trained models we can use Brightbox to inspect their internals and trivially, the internals of an
ensemble of these models. In this example, we construct an ensemble that is the median of the xgboost and
neural net models.
library(brightbox)
Generate partial dependency plots for each feature
pd <- run_partial_dependency(x, model_list = list(xgboost = xgb, nnet = nn),

ensemble_colname = "ensemble", ensemble_fcn = median)

zn

ptratio rad rm tax

dis indus lstat nox

age b chas crim

0 25 50 75 100

12.5 15.0 17.5 20.0 0 5 10 15 20 25 4 5 6 7 8 9 200 300 400 500 600 700

2.5 5.0 7.5 10.0 12.5 0 10 20 0 10 20 30 0.4 0.5 0.6 0.7 0.8

0 25 50 75 100 0 100 200 300 400 1.00 1.25 1.50 1.75 2.00 0 25 50 75

15

18

21

24

20

24

28

20

22

24

26

22.5
23.0
23.5
24.0
24.5
25.0

21

24

27

30

20
25
30
35
40

20

21

22

21
22
23
24
25

20

22

24

26

22
24
26
28

20
25
30
35
40

22

24

26

24

26

28

Value Cutpoint

P
ar

tia
l D

ep
en

de
nc

e

model

ensemble

nnet

xgboost

In the returned plot we can see how medv changes with respect to each feature for every model. As a result,
there are quite a few things we can learn by inspecting the plot.

1. We can easily see which features have a positive or negative relationship with the response and that the
patterns are more complex than in the earlier example with linear regression (rm and nox for example).

2. There are some features and some ranges within features where the two models are roughly in agreement.
From this we can conclude that the plotted signal in those ranges is rather strong. (age, rm, dis)

3. Some features have a wider range in the y-axis than others. This means that the feature had a larger
impact on the response. In general, if a partial dependency plot is completely flat (zero slope) then the
feature does not affect the model’s predictions at all (an exception being when interaction effects are
present).

As was hinted in points 2 and 3 above, partial dependency plots can help us determine feature importance by
inspecting the partial dependence range and variance. run_partial_dependency returns a data.table with
such calculations pre-computed.
pd was previously saved from run_partial_dependency
head(pd)
#> feature feature_val model prediction vimp
#> 1: rm 3.561000 xgboost 23.23486 20.39906
#> 2: rm 4.140889 xgboost 20.89914 20.39906
#> 3: rm 4.720778 xgboost 20.89914 20.39906
#> 4: rm 5.300667 xgboost 17.73334 20.39906

3

#> 5: rm 5.880556 xgboost 19.38172 20.39906
#> 6: rm 6.460444 xgboost 21.32710 20.39906

pd contains the data necessary to reconstruct the partial dependency plots (columns feature, feature_val,
model, and prediction) as well as a variable importance column (vimp). Variable importance is calculated
as the y-axis range for a given feature and model, with the ensemble model chosen by default (TODO:
incorporate variance into the variable importance calculation).
Inspect the variable importance of each feature
unique(pd[, list(feature, vimp)])
#> feature vimp
#> 1: rm 20.399065
#> 2: dis 15.656962
#> 3: crim 7.502317
#> 4: nox 5.554842
#> 5: age 5.446153
#> 6: lstat 5.239971
#> 7: tax 5.212727
#> 8: rad 3.871130
#> 9: zn 3.622065
#> 10: ptratio 3.333818
#> 11: indus 2.272505
#> 12: chas 1.770995
#> 13: b 1.480411

From here we may be interested in plotting just the 10 most important features.
pd_top <- run_partial_dependency(x, model_list = list(xgboost = xgb, nnet = nn),

feature_cols = unique(pd[["feature"]])[1:10],
ensemble_colname = "ensemble", ensemble_fcn = median)

tax zn

nox ptratio rad rm

age crim dis lstat

200 300 400 500 600 700 0 25 50 75 100

0.4 0.5 0.6 0.7 0.8 12.5 15.0 17.5 20.0 0 5 10 15 20 25 4 5 6 7 8 9

0 25 50 75 100 0 25 50 75 2.5 5.0 7.5 10.0 12.5 0 10 20 30

21

24

27

30

20

25

30

35

40

20

25

30

35

40

20

22

24

26

15

18

21

24

22

24

26

24

26

28

22

24

26

28

20

24

28

20

22

24

26

Value Cutpoint

P
ar

tia
l D

ep
en

de
nc

e

model

ensemble

nnet

xgboost

4

Inspecting the variance of a partial dependence plot

We may wish to check the stability of the relationship between a feature and the partial dependence. How do
we know that the relationship isn’t just by chance, an artifact of a model overfitting?

We propose an approach in which many models are trained on different subsamples of the training data. Both
visual tests and automated tests give us good insight as to the variance in the partial dependence relationship.

Let’s start by training 50 xgboost models on random subsamples of the BostonHousing dataset and store
the resulting models in a list:
library(caret)
Train 50 xgboost models
xgb_list <- list()
for (i in 1:50) {

ind <- sample(x = 1:nrow(x), size = 404) # randomly sample ~80% of rows
xgb_list[[i]] <- train(x = x[ind], y = y[ind],

method = "xgbTree", metric = "RMSE",
trControl = trainControl(method = "none"),
tuneGrid = xgb$bestTune)

}
names(xgb_list) <- paste("xgb", 1:50, sep = "_")

Now that we have our 50 seperate models stored in list, we can try plotting the resulting output. Instead of
plotting all 50 models in the same plot, which would turn into a mess, we plot specific quantiles of the model
predictions, namely the 5th, 50th, and 95th quantiles.
return list of partial dependency data.tables, one data.table for each feature
pd_list <- loop_calculate_partial_dependency(feature_dt = x, model_list = xgb_list)
pd <- do.call(rbind, pd_list) # rbind data.tables into one long data.table

pd_quant <- pd[model != "ensemble",
list(lcl = quantile(prediction, .05),

ensemble = median(prediction),
ucl = quantile(prediction, .95)),
by = c("feature", "feature_val")]

ggplot(data = pd_quant,
aes(x = feature_val,

y = prediction)) +
geom_line(aes(y = ensemble), size = 1.2, color = "red") +
geom_line(aes(y = ucl), size = 0.5, linetype = "dashed") +
geom_line(aes(y = lcl), size = 0.5, linetype = "dashed") +
facet_wrap(~feature, scales = "free") +
labs(x = "Value Cutpoint", y = "Partial Dependence")

5

zn

ptratio rad rm tax

dis indus lstat nox

age b chas crim

0 25 50 75 100

12.5 15.0 17.5 20.0 0 5 10 15 20 25 4 5 6 7 8 9 200 300 400 500 600 700

2.5 5.0 7.5 10.0 12.5 0 10 20 0 10 20 30 0.4 0.5 0.6 0.7 0.8

0 25 50 75 100 0 100 200 300 400 1.00 1.25 1.50 1.75 2.00 0 25 50 75

16
18
20
22
24

18
20
22
24

21
22
23
24
25
26

22.5

23.0

23.5

24.0

22.4

22.5

22.6

20

30

40

22.4

22.5

22.6

20
21
22
23
24

20
21
22
23

20

22

24

26

20

30

40

50

22.4

22.5

22.6

22
23
24
25

Value Cutpoint

P
ar

tia
l D

ep
en

de
nc

e

We can see that for variables like dis, tax, and rm, there is little spread between the quantiles, indicating
very stable results regardless of the subsample the models were trained on. Conversely, we can conclude that
variables like crim and chas have a high variance between models, at least for certain ranges of the variables;
we should treat any inference about these variables with caution.

While the above is a useful visual test, we can also get an automated ranking of variable importance normalized
by model variance. The function calculate_pd_vimp_normed performs the following operations:

1. Computes the same score as calculate_pd_vimp
2. Computes the standard deviation of the model predictions at each value cutpoint, returning a vector of

standard devation scores
3. Returns a summary value (i.e. a vector of length 1) of the standard deviation vector returned in step 2.

The default summary function is to take the median of the standard deviation vector.
4. Divides the score computed by calculate_pd_vimp in step 1 by the summary value of the standard

deviation in step 3.

We simply pass pd_list to the function calculate_pd_vimp_normed using lapply to get the variance
adjusted ranking of all variables in the dataset:
apply calculate_pd_vimp_normed to each element of pd_list
vimp_normed_vec <- sapply(pd_list, calculate_pd_vimp_normed)
#Print descending order of variable importance
print(vimp_normed_vec[order(-vimp_normed_vec)])
#> dis rm tax age rad nox crim
#> 37.501116 14.827416 9.584020 9.460136 9.298281 8.441780 3.839901
#> indus zn chas ptratio b lstat
#> 3.668547 2.780694 1.583559 0.000000 0.000000 0.000000

As we can see, the ranking is consistent with what we can visually identify as being the most stable
relationships.

6

Partial dependency functions

While the function run_partial_dependency is the primary interface for partial dependency plots, it is
composed of the following functions which can be useful if you want to avoid redundant calculations.

• calculate_partial_dependency
• loop_calculate_partial_dependency
• facet_plot_fcn
• loop_plot_fcn
• plot_partial_dependency
• calculate_pd_vimp

Marginal Variable Importance

(TODO: change this to a walkthrough instead)

calculate_marginal_vimp(x, y, method, loss_metric, resampling_indices, tuneGrid, trControl,
vars = names(x), allow_parallel = FALSE, ...)

Arguments x: data.table containing predictor variables
y: vector containing target variable
method: character string defining method to pass to caret
loss_metric: character. Loss metric to evaluate accuracy of model
resampling_indices: a list of integer vectors corresponding to the row indices used for each resampling
iteration
tuneGrid: a data.frame containing hyperparameter values for caret. Should only contain one value for
each hyperparameter. Set to NULL if caret method does not have any hyperparameter values.
trControl: trainControl object to be passed to caret train.
vars: character vector specifying variables for which to determine marginal importance Defaults to all
predictor variables in x.
allow_parallel: boolean for parallel execution. If set to TRUE, user must specify parallel backend in
their R session to take advantage of multiple cores. Defaults to FALSE.
...: additional arguments to pass to caret train

Description

A caret model is trained on training data according to resampling indices specified by the user, and error is
calculated on out of sample data. Variable importance is determined by calculating the change in out of
sample model performance when a variable is removed relative to baseline out of sample performance when
all variables are included.

• for b = 1, ..., B do
1. Draw a bootstrap sample of the data
2. Fit the model and calculate its prediction error Errb, using the OOB data
3. Fit a second model, but without variable v, and calculate its prediction error, Errmarg

v,b

• end for
• Calculate the marginal VIMP by averaging: ∆marg

v =
∑B

b=1[Errmarg
v,b − Errb]/B

The workhorse function for Marginal Variable Importance is implemented in calculate_marginal_vimp
(source).

7

https://github.com/breather/brightbox/blob/master/R/calculate_variable_importance.R

	Installation
	Partial Dependency Plots
	Introduction
	Walkthrough
	Inspecting the variance of a partial dependence plot
	Partial dependency functions

	Marginal Variable Importance

