knitr::opts_chunk$set(
  collapse = TRUE,
  comment = "#>"
)

Harris R.B., White G.C., Schwartz C.C. & Haroldson M.A. (2007) Population growth of Yellowstone grizzly bears: uncertainty and future monitoring. Ursus, 18, 167-177.

Eberhardt L.L. & Breiwick J.M. (2010) Trend of the Yellowstone grizzly bear population. Int. J. Ecol. doi: 10.1155/2010/924197.

Eberhardt L.L. & Knight R. R. (1996) How many grizzlies in Yellowstone? J. Wildlife Manage., 60, 416-421.

library(gamkapva)
load("~/Box Sync/R/gamkapva/data/GMNR_zebra.rda")
head(GMNR_zebra)
plot(N.zebra ~ year, data = GMNR_zebra, type = "b")

Log plot

plot(log(N.zebra) ~ year, data = GMNR_zebra, type = "b")
log_mod <- lm(log(N.zebra) ~ year, data = GMNR_zebra)
abline(log_mod, col = 2, lwd = 3, lty = 4)
mu_log <- coef(log_mod)["year"]
lambda_log <- exp(mu_log)

Calculate lambda

lambda.i <- GMNR_zebra$N.zebra[-1]/GMNR_zebra$N.zebra[-nrow(GMNR_zebra)]
lambda.i <- c(lambda.i,NA)
GMNR_zebra$lambda.i <- lambda.i
hist(GMNR_zebra$lambda.i )

Calculate log(lambda)

GMNR_zebra$log.lambda.i  <- log(GMNR_zebra$lambda.i )
hist(GMNR_zebra$log.lambda.i )

Calculate x.i

delta.t <- GMNR_zebra$year[-1]-GMNR_zebra$year[-nrow(GMNR_zebra)]
GMNR_zebra$delta.t <- c(x.i,NA)
GMNR_zebra$x.i <- sqrt(GMNR_zebra$delta.t)

Calculate y.i

GMNR_zebra$y.i <- GMNR_zebra$log.lambda.i/GMNR_zebra$x.i
i.1yr.delta.t <- which(GMNR_zebra$delta.t == 1)
lambda_naive <- mean(GMNR_zebra$lambda.i[i.1yr.delta.t], na.rm=T)
mu_naive <- log(lambda_naive)

Model

dennis_mod <- lm(y.i ~ 0 + x.i, data = GMNR_zebra)

Plot data

plot(y.i ~ x.i, data = GMNR_zebra, 
     xlim = c(0,1.5),
     ylim = c(-0.3,0.3))
abline(dennis_mod, col = 2, lty = 2, lwd = 3)

Evaluate regression model

summary(dennis_mod)
anova(dennis_mod)
confint(dennis_mod)

mu_dennis <- coef(dennis_mod)

mu_dennis - 0.03080*1.96
mu_dennis + 0.03080*1.96

lambda_dennis <- exp(mu_dennis)

Response: y.i Df Sum Sq Mean Sq F value Pr(>F)
x.i 1 0.08862 0.088615 3.9096 0.06196 . Residuals 20 0.45332 0.022666

mu_naive
mu_log
mu_dennis

lambda_naive
lambda_log
lambda_dennis

CI for sigma Chi sq dist w/ t-1 df

# chi2.025 <- qchisq(0.025, df)  
# chi2.975 <- qchisq(0.975, df)  
# 
# sigm2_dennis_ci_up <- df*sigma2_dennis/chi2.025
# sigm2_dennis_ci_lo <- df*sigma2_dennis/chi2.975
# 
# sigma2_dennis_ci <- c(sigm2_dennis_ci_lo,sigm2_dennis_ci_up)

qchisq(0.025, df)  #10.28290
qchisq(0.975, df)  #35.47888
(df*0.022666)/qchisq(0.025, df) 
(df*0.022666)/qchisq(0.975, df) 

"For the mountain zebra population, the estimates of the population growth parameters mu_hat and sigma_hat were 0.052 (95% confidence intervals; lower = 0.004, upper = 0.108) and 0.020 (95% confidence intervals; lower = 0.012, upper = 0.042), respectively. Importantly, although mu_hat was positive, the lower confidence interval of sigma_hat was negative and the probability that the slope of the regression was zero, was 0.0659. This analysis suggests that the probability of population growth over the long term is uncertain"

Error in interpretation: "the probability that the slope of the regression was zero, was 0.0659"

Autcorrelation

lmtest::dwtest(dennis_mod)
lmtest::bgtest(dennis_mod)

Outlierts

dffits(dennis_mod)

## test for outliers using dffits (p.74)
dffits(dennis_mod)[dffits(dennis_mod) > 2 * sqrt(1 / nrow(GMNR_zebra)) ]
popbio::countCDFxt(mu = mu_dennis,sig2 = 0.022666,
                   nt = nrow(GMNR_zebra),
                   Nc = GMNR_zebra$N.zebra[nrow(GMNR_zebra)],
                   Ne = 10,
                   tq = GMNR_zebra$year[nrow(GMNR_zebra)]-GMNR_zebra$year[1],
                   Nboot = 10)


brouwern/gamkapva documentation built on Dec. 19, 2021, 11:48 a.m.